### **The Energy Challenge**

### What Can Rheologists Do?

Robert C. Armstrong Department Head, Chemical Engineering Co-Chair, Energy Research Council Massachusetts Institute of Technology



Bingham Medal Lecture, October 10, 2006

#### National direction in energy sometimes feels like this!



### Why Is the Energy Issue So Complicated?

- Few people, other than energy specialists, are interested in gigajoules, kilowatt-hours, or quadrillions of BTU's...
- They are interested in **energy services** 
  - Comfortable rooms, cold beer, cooked food, convenient transportation...
- As well as:
  - The state of the economy
  - The state of the environment
  - Their personal and national security
  - And energy choice if these values are at risk

An average American family spends only 3 to 4% of their income on energy!!

# Outline

- The Energy Challenge
  - Energy supply and demand
  - Energy and security
  - Energy and the environment
- A Broad Response
  - Science and technology for a clean energy future
  - Improving today's energy systems
  - Global climate change
- What Can Rheologists Do?
- Summary



# **The Perfect Storm**

- Energy supply and demand
- Energy and security
- Energy and the environment





# The "Perfect Storm"

#### Energy supply and demand

- 450 EJ/year (14.2 TW)/16 T kWh-electric/year
- 86% fossil fuel/enough oil? enough air for coal?...
- Projected doubling of energy use and tripling of electricity use by 2050 in business as usual
- 1.4 Billion people without electricity in 2030
- 50 year time scale for major shifts in energy

# **World Energy Consumption 1850**





Bingham Medal Lecture, October 10, 2006



Bingham Medal Lecture, October 10, 2006

## **Scale Issues – Renewable Sources**



# The "Perfect Storm"

- Energy and security
  - Geological and geopolitical realities of oil and gas supply
  - Oil (and natural gas) adequate and reliable supply
  - Vulnerability of extended energy delivery systems
  - Nuclear weapons proliferation facilitated by worldwide nuclear power expansion
  - Dislocation from environmental impacts, such as from climate change

### **Proven oil reserves at end 2005**

Proved reserves at end 2005 Thousand million barrels



Bingham Medal Lecture, October 10, 2006

BP Statistical Review of World Energy (June 2006)

# **Oil consumption per capita**

Consumption per capita Tonnes



# **Oil and Energy Security**

- Core Issue: inelasticity of transportation fuels market, together with geographical and geophysical realities of oil
- Addressing sudden disruptions
  - Strategic reserves
  - Well-functioning markets
- Increasing and diversifying supplies
  - Enhanced production from existing fields
  - Arctic E&P
  - "Unconventional" oil (tar sands,...)
- Weakening the "addiction"
  - Very efficient vehicles
  - Alternative fuels (coal, NG, biomass)
  - New transportation paradigm (electricity as "fuel"? H2?)

# The "Perfect Storm"

#### Energy and environment

- Risk of climate change
- 50+ years of CO2 "emissions budget"
- "De-carbonizing" of energy?

# The Average Temperature of the Earth is Rising

- Up 0.8±0.4°C in last 140 years (instrumental records)
- 19 of the 20 warmest years since 1860 have all occurred since 1980, the 11 warmest all since 1990
- 1998 was the warmest year in the instrumental record and probably the warmest in 1,000 years (tree rings, ice cores); 2002 was the second warmest
- The last 50 years appear to have been the warmest half century in 6,000 years (ice cores)
- It is approximately as warm now as the Holocene maximum and within ~1°C of the maximum temperature of the past million years\*

<sup>\*</sup>Hansen, et al., PNAS, 103, 14288-14293 (2006).

# Impacts of Climate Change –<br/>Coastal Flooding

#### 1 Meter Rise South Florida



# Climate Change Technology/Policy Pathways

- Efficiency
- Low carbon or "carbon-less" technologies/fuels
  - Fuel switching, e.g., coal to natural gas
  - Nuclear power (fission, possibly fusion in long term)
  - Renewables (wind, geothermal, solar,...)
    - Note: scale matters
- Carbon dioxide capture and sequestration

Climate control policy is not new. As early as 1306 Edward I of England prohibited the burning of coal in craftsman's furnaces. Later Elizabeth I banned burning of coal in London while Parliament was in session.





# **Uncertainty on a 50-year Time Scale**

- Future scenarios highly uncertain on mid-century time scale
  - 50-year time scale characteristic of significant change in energy infrastructure, of greenhouse gas concentrations approaching twice pre-industrial,...
- Multiple uncertainties
  - Resource availability?
    - fossil fuels, land for renewables, effects of renewables at scale...
  - Science and technology advances?
    - technology breakthroughs, climate change impacts
  - Geopolitical considerations?
    - Middle East, climate protocol participation,...
- Broad response pursuing multiple technology and policy options is needed

# **A Broad Approach Is Needed**

- Science and technology for a clean energy future
  - Enabling research to underpin critical breakthroughs
  - Basic research in university environment
  - Shift from hunter-gatherer to farming
- Improving today's energy systems
  - Evolve today's energy systems to higher efficiency, lower cost, less environmental impact,...
  - Closer to marketplace implies strong industry collaboration
- Energy systems for a rapidly developing world
  - Advanced developing countries drive many of the leading energy/environmental challenges
  - Less advanced developing economies offer opportunities for new energy development technologies/models

# Where Can Rheologists Contribute?

- The future
  - Biofuels
  - Solar
  - Wind
- How do we get there from here?
  - Drag reduction
  - Enhanced oil recovery
  - Supercritical CO2 in porous media and oil sequestration and EOR
  - Flow of waxy crude
  - Viscosity vs. composition, T, p of many hydrocarbons, e.g., kerogen
  - Production from deep wells slushy flow
  - Drilling muds
  - Efficiency light weight materials and manufacturing for vehicles
- Global issues
  - Sea ice cover flows Global Climate Model
  - Glacial flows

### **Energy Options – Biomass Conversion!**





#### Ad from PBS NewsHour with Jim Lehrer

# **Opportunity: Biomass as major source of liquid fuels**



<u>2004:</u> DOE report: 1 B tons biomass/year (actually, 1.38B tons of *sustainable* biomass production/year)

If fully utilized, this biomass can supply ~40% of the US annual liquid fuels demand (~45B gallons/year)

# What is different now?

### Notable developments in B2B conversion

- 1995-2005: Drastic reduction of biomass hydrolysis cost (from \$1/gal of ethanol to ~\$0.10/gallon)
  - The prospect of abundant, affordable, fermentable sugars is a distinct possibility
  - A cost-effective B2B conversion process must:
    - Use all sugars (maximize YIELD)
    - Minimize capital cost (maximize PRODUCTIVITY)
    - Use ethanol tolerant organisms
  - Yield, productivity, ethanol tolerance are system properties that depend on many genes
- 1990-2005: Development of Metabolic Engineering as key technology for product synthesis in microorganisms based on a Systems Approach to cell engineering

# **Project feasibility**

- Established record of success of Metabolic Engineering
  - Aminoacids, biopolymers, 1,3 propane-diol, AIDS drugs, tamiflu precursor, ethanol, lycopene, artemisinin (malaria),...
- Breakthrough new technology of global Transcriptional Machinery Engineering (gTME)
- Benchmarks: 1,3 propane-diol
  - 5-7 years of development
  - \$25-50 M cost
- Engineering strains for the economic full conversion of sugars from biomass hydrolysates is no different or drastically more difficult problem
- Clear benefit (45 B gallons/year) attainable in 5-10 years at a development cost of \$50-100 M

# **The Solar Challenge**

• How do we reduce the cost of solar?



- Fundamentals
  - Low cost manufacturing + need at least 10% power efficiency to compensate for fixed costs (frame, land, inverter, taxes, etc...)

#### **The Opportunity:**

New semiconductors compatible with roll-to-roll processing



Bingham Medal Lecture, October 10, 2006

# **Increasing the Supply of Fuels**



- Current oil recovery factors are ~35%
- At present a 1% increase in oil field recovery factor = 1 year of consumption at current demand



#### **Importance of Dynamic Reservoir Models**

#### **Conventional Water Injection**



#### **Optimized result (Same production rate, 25% extra recovery)**



# **Deep Water Drilling Challenges\***

- 4,000 ft of water
- Next few thousand feet are unconsolidated – first oil and gas are found in this region
- Sea water near bottom is near freezing, so T-dependence is important
  - Concern about deposition of asphaltenes, waxy oil, ...
- Gas wells might form hydrates slushy, foamy material that does not flow well



\*Richard A. Sears, Shell International Exploration & Production



Source: Broecker, 1991, in Climate change 1995, Impacts, adaptations and mitigation of climate change: scientific-technical analyses, contribution of working group 2 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.

# **Rheology of Sea Ice**

#### • Sea ice cover

- Layer of sea ice several meters thick can cover up to 8% of the surface of the earth
- Lateral scale for ice floes is 0.1 to 5 km
- Long (many floe widths) leads of open water or weaker ice separate these
- Important in global circulation models used for climate predictions
- Stress / deformation model based on ice floe interactions and evolution of ice floe orientation\*

<sup>\*</sup>Wilchinsky and Feltham, *JNNFM*, **138**, 22-32 (2006)

# **Closing Thoughts**

- This is an enormous problem both in magnitude and time scale
  - To provide 14 TW of carbon-free power by 2050 from nuclear sources
    - ~ 1 GW power plant needs to be built per day
    - What do we do with the nuclear waste?
  - A variety of technology options are needed
  - We must start now
  - At these magnitudes we must do our best to assess impact on our environment before we commit

# **Closing Thoughts**

- Because of the set of drivers today, this problem will not go away
- There is no single answer rheological problems abound in
  - Long term
    - Renewables
  - Short term
    - Facilitating fossil fuel supplies
  - Global
    - Climate change
- We all need to contribute towards solving the greatest challenge of the 21<sup>st</sup> century