THE SOCIETY OF RHEOLOGY

72ND ANNUAL MEETING
PROGRAM

Westin Resort
Hilton Head Island, South Carolina
February 11-15, 2001

Program Committee:
Gareth McKinley (Co-Chair)
Massachusetts Institute of Technology
Saad A. Khan (Co-Chair)
North Carolina State University
Shelley L. Anna
Solutia, Inc.
Nitash Balsara
University of California, Berkeley
Wesley R. Burghardt
Northwestern University
Jeff Byars
National Center for Agricultural Utilization Res.
Andrea Chow
Caliper Technologies Corp.
Ralph H. Colby
The Pennsylvania State University
Daniel De Kee
Tulane University
Peter Fischer
Swiss Federal Institute of Technology (ETH)
William H. Hartt
The Procter & Gamble Co.
Andrew M. Howe
Kodak European R & D
Jay Janzen
Phillips Research Center
Kurt W. Koelling
The Ohio State University
Jozef Kokini
Rutgers, The State University of New Jersey
Ramanan Krishnamoorti
University of Houston
Ronald G. Larson
University of Michigan
Robert Lionberger
University of Michigan
Michael E. Mackay
Stevens Institute of Technology
Tom C. B. McLeish
University of Leeds
Susan J. Muller
University of California, Berkeley
Matteo Pasquali
Rice University
Jean-Michel Piau
UJF - Grenoble
Dilip Rajagopalan
E. I. DuPont and Co.
Yuriko Renardy
Virginia Tech.
Eric S. G. Shaqfeh
Stanford University
Michael Solomon
University of Michigan
Mohan Srinivasarao
Georgia Institute of Technology
Garth L. Wilkes
Virginia Tech.
H. Henning Winter
University of Massachusetts at Amherst
David J. Yarusso
3M Company

Local Arrangements:
Donald G. Baird, Virginia Tech.

Abstract Book Editor and Webmaster:
Albert Co, University of Maine
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>L. Leibler (PL1)</td>
<td>Coffee</td>
</tr>
<tr>
<td>8:45</td>
<td>PF 1</td>
<td>RT1</td>
</tr>
<tr>
<td>9:10</td>
<td>PF 2</td>
<td>RT2</td>
</tr>
<tr>
<td>9:35</td>
<td>PF 3</td>
<td>RT3</td>
</tr>
<tr>
<td>10:00</td>
<td>PF 4</td>
<td>RT4</td>
</tr>
<tr>
<td>10:25</td>
<td>PF 5</td>
<td>RT5</td>
</tr>
<tr>
<td>11:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>11:25</td>
<td>PF 6</td>
<td>RT14</td>
</tr>
<tr>
<td>11:40</td>
<td>PF 7</td>
<td>RT15</td>
</tr>
<tr>
<td>11:55</td>
<td>PF 8</td>
<td>RT16</td>
</tr>
<tr>
<td>12:00</td>
<td>PF 9</td>
<td>RT17</td>
</tr>
<tr>
<td>12:25</td>
<td>PF 10</td>
<td>RT18</td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>13:10</td>
<td>EA 1</td>
<td>RT19</td>
</tr>
<tr>
<td>13:25</td>
<td>EA 2</td>
<td>RT20</td>
</tr>
<tr>
<td>13:40</td>
<td>EA 3</td>
<td>RT21</td>
</tr>
<tr>
<td>13:55</td>
<td>EA 4</td>
<td>RT22</td>
</tr>
<tr>
<td>14:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:35</td>
<td>EA 5</td>
<td>AS1</td>
</tr>
<tr>
<td>14:50</td>
<td>EA 6</td>
<td>AS2</td>
</tr>
<tr>
<td>15:05</td>
<td>EA 7</td>
<td>AS3</td>
</tr>
<tr>
<td>15:20</td>
<td>EA 8</td>
<td>AS4</td>
</tr>
<tr>
<td>15:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>15:50</td>
<td>EA 9</td>
<td>AS13</td>
</tr>
<tr>
<td>16:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>16:35</td>
<td>EA 10</td>
<td>AS14</td>
</tr>
<tr>
<td>16:50</td>
<td>EA 11</td>
<td>AS15</td>
</tr>
<tr>
<td>17:00</td>
<td>EA 12</td>
<td>AS16</td>
</tr>
<tr>
<td>17:20</td>
<td>EA 13</td>
<td>AS17</td>
</tr>
<tr>
<td>17:30</td>
<td>Business Meeting</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>Awards Banquet</td>
<td></td>
</tr>
</tbody>
</table>

Session Codes

AS = Associating Polymers and Surfactant Systems
BC = Blends and Co-polymers
CG = Rheology in Confined Geometries and Microfluidic Applications
EA = Elastomers, Adhesives & Soft Solids
EF = Extensional Flow & Extensional Rheometry
FB = Food and Biopolymers
FD = Non-Newtonian Fluid Dynamics & Flow Stability
LC = Liquid Crystalline Systems
MR = Microscopic Rheology & Single Chain Dynamics: Experiments & Analysis
MS = Polymer Melts and Solutions
PF = Rheology in Processing Flows
PL = Plenary Lectures
RT = Rheology & Topology
SC = Suspensions and Colloidal Systems
Contents

Plenary Lectures ... 2

Social Program... 2

Updates of Abstract Book... 3

Technical Program... 4

 Monday ... 4

 Tuesday ... 6

 Wednesday .. 8

 Thursday ... 10

Poster Session .. 12

This publication was generated with scripts developed by Albert Co. The contents of this publication were extracted from the database of The Society of Rheology abstract submission web site at http://www.rheology.org/sorabst/. Online version is available at http://www.rheology.org/sor012/.
Plenary Lectures

8:30 AM Barnwell

Monday, February 12 Yield, slip & aging: The fate of soft dispersions
Ludwik Leibler
CNRS/ATOFINA Joint Research Center

Tuesday, February 13 Bingham Lecture
The microdynamics of drop breakup and coalescence in flow
L. Gary Leal
Chemical Engineering, University of California, Santa Barbara

Wednesday, February 14 Structure and dynamics of surfactant mesophases
Robert K. Prud'homme
Chemical Engineering, Princeton University

Social Program

Sunday, February 11 Welcoming Reception
6:30 PM - 9:00 PM Archer/Barnwell
Sponsored partly by TA Instruments

Monday, February 12 Poster Session Refreshments
5:30 PM – 8:00 PM Savannah Foyer North

Society Reception
7:00 PM - 9:00 PM Pool Terrace
Sponsored partly by Rheometric Scientific, Inc.

Tuesday, February 13 Business Meeting
5:30 PM Lady Davis/Sampson

Awards Reception
7:00 PM Savannah Foyer North
Sponsored partly by Paar Physica

Awards Banquet
8:00 PM Calibogue
Updates of Abstract Book

- The Plenary Lectures will be held in Barnwell.

- The Poster Session and Student Poster Competition will be held on February 12 (Monday) from 5:30 PM to 8:00 PM at Savannah Foyer North.
Monday, February 12

Morning

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>PL1.</td>
<td>Yield, slip & aging: The fate of soft dispersions.</td>
<td>L. Leibler</td>
</tr>
<tr>
<td>9:45</td>
<td></td>
<td>COFFEE</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Drayton
Rheology & Topology</td>
<td>RT1. Influence of long-chain branching on linear viscoelastic properties of polyethylene melts. C. Gabriel and H. Münstedt</td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td></td>
<td>PF2. Shear induced PE alignment in the TLCP/PE blend system.</td>
<td>C.-K. Chan and P. Gao</td>
</tr>
<tr>
<td>11:00</td>
<td>Elliott
Confined Geometries</td>
<td>CG1. Lateral dispersion of particles and mammalian cells in microchannels. B. Wang, A. W. Chow and M. Spaid</td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td></td>
<td>LUNCH</td>
<td></td>
</tr>
</tbody>
</table>

Afternoon

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30</td>
<td>Lady Davis/Sampson
Rheology in Processing Flows</td>
<td>EF1. Transient extensional rheology and elongational flow instabilities of polymer solutions: Role of polymer concentration and molecular weight. O. F. Brauner and G. H. McKinley</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elliott
Confined Geometries</td>
<td>CG6. 2D electrophoresis and flow of DNA chains. G. G. Fuller, D. J. Olson and E. Stancik</td>
<td></td>
</tr>
</tbody>
</table>
1:55 **EF2.** A technique for characterizing complex polymer solutions in extensional flows. G. Braithwaite and S. H. Spiegelberg

2:20 **EF3.** Elongational relaxation times of elastic fluids measured by micro-filament rheometry and axisymmetric contraction flows. G. M. Wise and G. W. Reynolds

2:45 **EF4.** Spray drop breakup and elongational viscosity measurements of dilute polymer solutions. R. K. Prud’homme, V. Smith-Romanogli and R. Dexter

RT7. Dynamics of topological mixtures. E. Stiakakis, D. Vlassopoulos, G. Fytas and J. Roovers

RT8. Linear and nonlinear relaxation dynamics of entangled multiarm polymers. J. Juliani, M. T. Islam and L. A. Archer

CG7. Magneto-sensitive self-organizing arrays for DNA separations. P. S. Doyle, J. Bibette, D. Deminiere and J.-L. Viovy

CG8. Brownian dynamics simulations of polymer molecules in shear flow confined between parallel adsorbing walls. M. Chopra and R. G. Larson

CG9. The conformations of a DNA molecule near a glass surface. L. Li, H. Hu and R. G. Larson

BC7. Polymer surface functionalization by field-induced migration of copolymer additives. H.-J. Lee and L. A. Archer

BC9. Double reptation predictions of the linear viscoelasticity of miscible polymer blends. I. A. Pathak, S. K. Kumar and R. H. Colby

3:10 COFFEE

3:35 **EF5.** Steady uniaxial elongational flows: The roles of intramolecular potentials. A. S. Bhandar and J. M. Wiest

4:00 **EF6.** Polymer dynamics in semi-dilute DNA solutions in a planar extensional flow. C. M. Schroeder, H. Babcock, J. S. Hur, S. Chu and E. G. Shaqfeh

4:50 **EF8.** Synergistic effect of strain hardening in HDPE/PS blends. K. H. Ahn, J. S. Hong, S. J. Baik and S. J. Lee

RT10. Detecting long-chain branching using linear viscoelasticity. R. G. Larson and C. Pattamaprom

RT11. Characterization of long-chain branching effects in linear rheology. W. B. Thimm, C. Friedrich, T. Roth, S. Trinkle and J. Honerkamp

RT12. The rheology of branched polyisobutylene and 1,4-polyisoprene. P. G. Santangelo, C. G. Robertson, C. M. Roland and J. E. Puskas

RT13. Entangled solution rheology detection of LCB. T. McLeish, B. J. Crosby, R. Daniels, M. Mangnus and S. de Vries

CG10. "Superstrings" in sheared polymer blends: The influence of coalescence, breakup and finite size. K. B. Migler

CG11. Dispersion visualization under high shear rate in a transparent couette flow cell. F. Mighri and M. A. Huneault

CG12. Virtual gap rheometry: Determining the relaxation spectrum from wave dispersion data. R. Davies, D. Morgan and R. Williams

CG13. Nano-scale and macro-scale studies of the dynamic tensile strength of complex fluids. R. Williams, N. Hilal and R. Bowen

SC1. The role of repulsive interparticle forces on suspension rheology. J. Bergenholtz, J. F. Brady and M. Vicic

SC2. The theory underlying the rheology of colloidal dispersions: A GENERIC approach. N. J. Wagner

SC3. Dynamic simulation of concentrated colloidal suspensions. K. R. Hase and R. L. Powell

SC4. Shear flow of a monolayer of rough spheres. H. J. Wilson

5:15 END

5:30 POSTER SESSION & REFRESHMENTS Savannah Foyer North

7:00 SOCIETY RECEPTION Pool Terrace
Tuesday, February 13

Morning

PL2. The microdynamics of drop breakup and coalescence in flow. L. G. Leal

COFFEE

Lady Davis/Sampson

Rheology in Processing Flows

9:45 PF6. The mystery of the mechanism of sharkskin: Case closed? K. B. Migler, F. Qiao and K. Flynn

RT15. Using the pom-pom equations to analyze polymer melts in exponential shear. R. S. Graham, T. McLeish and O. G. Harlen

RT16. Branching structure and rheological behavior of metallocene polyethylene. S. Costeux, P. M. Wood-Adams and D. Beigzedeh

11:25 PF10. Film: "Non-Newtonian Fluids". K. Walters, M. F. Webster and R. Williams

FD1. The effect of viscous heating on elastic instabilities in torsional flows of polymeric liquids. J. P. Rothstein and G. H. McKinley

FD2. Time scales and destabilization of Newtonian and viscoelastic Taylor-Couette flows caused by viscous heating. J. M. White and S. J. Muller

FD4. Polymer/surfactant-induced effects on the stability of wall-bounded shear flows. B. Sadanandan and R. Sureshkumar

FD5. Stability analysis of polymer melt flows using the pom-pom model. A. Bogaers, A. Grillet, G. Peters and F. Baaijens

LUNCH

Lady Davis/Sampson

Elastomers, Adhesives & Soft Solids

FD6. Breaking up is hard to do. Y. Renardy

FD7. Making breaking up harder to do. M. Renardy

Afternoon

Heyward

Suspensions and Colloidal Systems

SC5. Shear response of layered silicate nanocomposites. R. Krishnamoorti and J. Ren

SC8. A model relating structure of colloidal gels to their elastic properties. H. Wu and M. Morbidelli

SC9. Rheological simple behaviour: The stress equivalent shear rate, a concept to solve complex flow problems. W. Gleis

Heyward

RT18. The effects of entanglement on attempts to obtain molecular architecture information from polyethylene viscocities. D. C. Rohlfing

FD12. Making breaking up harder to do. M. Renardy

FD14. Polymer/surfactant-induced effects on the stability of wall-bounded shear flows. B. Sadanandan and R. Sureshkumar

SC11. Mechanical deformation of 2D aggregated colloids. S. Promkotra and K. T. Miller
2:20 **EA3.** Finite element modeling of PSA peel using a stored elastic energy density failure criterion. *D. D. Lindeman and D. J. Yarusso*

2:20 **FD8.** Dynamics of formation of non-Newtonian drops from capillaries: Comparison of predictions made with generalized Newtonian and viscoelastic constitutive equations. *O. E. Yildirim and O. A. Basaran*

2:45 **EA4.** A visco-elasto-plastic model for materials with yield stress characteristics. *G. H. McKinley*

2:45 **RT22.** The flow and thermodynamic properties of dendritic polymers. *M. E. Mackay, M. Jeong, G. Hay and C. J. Hawker*

2:45 **FD9.** Orientation of symmetric bodies in a second-order liquid at small and nonzero Reynolds number. *G. Galdi*

3:10 **SC12.** The E-FiRST effect: Electrorheology of shear thickening colloidal suspensions. *S. S. Shenoy, N. J. Wagner and J. W. Bender*

3:35 **EA5.** Viscoelasticity of epoxy nanocomposite glasses. *A. Lee, R. L. Blanski and S. H. Phillips*

3:35 **AS1.** Dynamics of associating polymers. *M. Rubinstein and A. N. Semenov*

4:00 **EA6.** Energy release rate for a crack in a tilted block. *A. N. Gent and M. Razzaghi-Kashani*

4:00 **FD10.** Swirling flow of viscoelastic fluids. *D. V. Boger*

4:00 **AS2.** A model for the viscoelastic response of micellar solutions of telechelic polymers. *X. X. Meng and W. B. Russel*

4:00 **SF11.** Axisymmetric flow birefringence: Extension to a time-dependent stagnation flow. *J. Bryant and W. R. Burghardt*

4:25 **EA7.** Force transmission of a constrained polymeric gel cylinder. *J.-H. Yu, D. A. Dillard and D. R. Lefebvre*

4:25 **AS3.** Gelation in physically associating polymer solutions. *S. K. Kumar and J. Douglas*

4:25 **FD12.** Dynamic response of a shear stress transducer. *C. Kolitawong and A. J. Giacomin*

4:50 **EA8.** Dynamic nanoscale contacts to adhesive viscoelastic materials. *M. Giri, D. Bousfield and W. N. Unertl*

4:50 **AS4.** Rheology and dynamics of associative polymers in shear and extension: Theory and experiments. *A. Tripathi, G. H. McKinley, M. K. Tam and R. D. Jenkins*

4:50 **FD13.** Contraction flow behavior of metallocene-catalyzed polyethylenes. *P. J. Doerpinghaus and D. G. Baird*

5:15 **SC13.** Characterization of ER fluids with dynamic drop viscometry. *L. J. Kecskes*

5:30 **SC14.** Probing mobility of magnetic particles inside drying coatings. *A. Potanin*

7:00 **SC15.** Rheological behavior and microstructure of magnetic particle dispersions diluted with nonmagnetic particles. *Y. S. Lee, B. S. Chae and A. M. Lane*

7:00 **SC16.** A slotted plate device for measuring static yield stress. *D. De Kee, L. Zhu and K. Papadopoulos*

8:00 **SC17.** Direct measurement of strongly attractive particle-particle interactions. *K. L. Eccleston and K. T. Miller*
Wednesday, February 14

Morning

8:30

Lady Davis/Sampson

Food and Biopolymers

Barnwell

COFFEE

9:20

Drayton

Associated Polymers and Surfactants

AS5. Structure and rheology of diblock polyelectrolyte gels. **S. R. Bhatia** and **A. Mouchid**

AS6. Ordering transition of PEGs modified with fluorocarbon at both ends: Rheology and SANS. **G. Tae**, **J. A. Kornfield**, **J. A. Hubbell** and **L. Lal**

AS8. Scaling of the material functions in HASE associative polymers - Effect of macromonomer type and constitution. **A. Hirst** and **R. English**

10:10

FB1. Gelation of globular proteins. **S. B. Ross-Murphy**

FB3. Aggregation and gel formation in biopolymer solutions. **A. Stradner**, **S. Romer**, **C. Urban** and **P. Schurenberger**

10:35

FB4. Rheology of concentrated biopolymer systems with elastic filler particles. **J. Marti**, **P. Fischer** and **E. J. Windhab**

FB5. Enzymatic control of rheology in mixed biopolymer gels. **V. B. Pai** and **S. A. Khan**

11:00

FB6. Constitutive analysis of β-glucan/amylopectin blends. **J. A. Byars** and **C. J. Carriere**

11:25

FB7. Ordering of coil-rod copolymers in shear. **A. Hirst** and **R. English**

11:50

SC18. Obtaining the compressive yield stress of suspensions from centrifuge measurements - an inverse problem. **Y. L. Yeow**

SC19. A new oscillation method enabling measurements at very small deflection angles and torques. **J. Laeuger** and **S. Huck**

Afternoon

1:30

FB6. Constitutive analysis of β-glucan/amylopectin blends. **J. A. Byars** and **C. J. Carriere**

FB7. Ordering of coiled rod copolymers in shear. **A. Hirst** and **R. English**

FB10. Enzymatic control of rheology in mixed biopolymer gels. **V. B. Pai** and **S. A. Khan**

FB11. Rheology of concentrated biopolymer systems with elastic filler particles. **J. Marti**, **P. Fischer** and **E. J. Windhab**

FB13. Scaling of the material functions in HASE associative polymers - Effect of macromonomer type and constitution. **A. Hirst** and **R. English**

SC22. The rheology of highly-filled and reactive suspensions using squeeze flow. **A. J. McHugh** and **A. Walberer**

R. K. Prud'homme and Y. Cheng

AS11. Linear and non-linear rheological properties of nanofibrilar skeleton structures imbedded in various polymer melts.
C. Friedrich, M. Fahrlander and W. Fraessdorff

MS2. Constitutive equations for linear polymer melts inspired by reptation theory and non-equilibrium thermodynamics.
A. Levgue, A. N. Beris and R. Keunings

SC24. Simultaneous flotation and sedimentation in three component mixtures.
S. A. Altobelli and L. A. Mondy

M. F. Webster, D. Ding and K. Sujatha

AS12. Rheo-NMR investigation of shear banding and molecular ordering in wormlike micelle solutions.
P. T. Callaghan and E. Fischer

MS3. 2-Dimensional rheology and polymer dynamics under non-linear deformations.
D. van Dusschoten, M. Wilhlem and H. W. Spiess

B. D. Timberlake and J. F. Morris

FB9. Viscoelastic effects observed during 2-D numerical simulation of flow and mixing in a model food mixer.
J. L. Kokini and R. K. Connelly

AS13. Shear-induced structure in rheothickening surfactant solutions.
V. Weber, R. Oda, E. Mendes and F. Schosseler

MS4. Ratio of dynamic moduli and estimation of the relaxation time distribution.
J. Huang and D. G. Baird

S. Feng, A. E. Kaiser, A. L. Graham, J. R. Abbott and M. S. Ingber

2:20

FB10. Modeling of melt conveying in a deep-channel single screw cheese stretcher.
C. Yu and S. Gunasekaran

S. Amin, R. M. van Zanten, K. P. Rufener, T. W. Kermis, S. J. Dees and J. H. van Zanten

MS5. Constraint release effects in monodisperse and bidisperse polystyrenes in fast transient shearing flows.
C. Pattamaprom and R. G. Larson

SC27. Consolidation of aggregated suspensions in drying.
L. A. Brown and C. F. Zukoski

FB11. Experimental investigation of laminar-turbulent transition in pipe flow for fruit purees.
P. Perona and S. T. Sordo

AS15. Influence of additives on the rheology and structure of wormlike and rodlike micelles.
L. M. Walker and M. H. T. Truong

MS6. Use cumulative distribution functions in the fitting of discrete spectra.
B. Caswell

SC28. The rheological behavior of "structured" fibril suspensions.
R. Liang, L. Han, D. Doraiswamy and R. K. Gupta

4:00

FB12. Effects of post-mortem storage and freezing on the viscoelastic properties of vocal fold tissues.
R. W. Chan

L. Guo, R. H. Colby, M. Lin and G. P. Dado

MS7. Interrupted shear flow of unentangled polystyrene melts.
P. G. Santangelo and C. M. Roland

SC29. Rheology and filtrate properties of montmorillonite suspensions with the terpolymer of itaconic acid-acrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid at high temperature.
Y. Wu, B. Zhang, D. Sun and C. Zhang

4:25

AS17. Synergistic enhancement of rheology in surfactant mixtures.
S. R. Raghavan and E. W. Kaler

MS8. Time-strain non-separability in polymer viscoelasticity.
K. S. Cho and Y. Kwon

SC30. Rheological properties and stabilization of magnetorheological fluids in a water in oil emulsion.
J. H. Park and O. O. Park

5:15
Thursday, February 15

Morning

Lady Davis/Sampson
Liquid Crystalline Systems

Drayton
Associating Polymers and Surfactants

Elliot
Polymer Melts and Solutions

Heyward
Microscopic Rheology

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:05</td>
<td>LC1</td>
<td>Rheological theory for chiral liquid crystals</td>
<td>A. D. Rey</td>
</tr>
<tr>
<td>8:30</td>
<td>LC2</td>
<td>A unified hydrodynamics theory for nonhomogeneous liquid crystal polymers</td>
<td>Q. Wang</td>
</tr>
<tr>
<td>8:55</td>
<td>LC3</td>
<td>Mesostructure evolution in tumbling nematic LCPs between shearing plates</td>
<td>G. Forest</td>
</tr>
<tr>
<td>9:20</td>
<td>LC4</td>
<td>Simulating disclinations in sheared nematic polymers</td>
<td>J. J. Feng, J. Tuo and L. G. Leal</td>
</tr>
<tr>
<td>9:45</td>
<td>COFFEE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td>LC5</td>
<td>Prediction and observation of chaotic dynamics in sheared liquid crystalline polymers</td>
<td>M. Grosso, J. Vermant, P. Moldenaers and P. L. Maffettone</td>
</tr>
<tr>
<td>10:35</td>
<td>LC6</td>
<td>Transient measurements of lyotropic LCP orientation within the 1-2 plane</td>
<td>W. R. Burghardt and F. E. Caputo</td>
</tr>
<tr>
<td>11:00</td>
<td>LC7</td>
<td>Shear-induced texture and its effect on the viscoelastic responses of a main chain thermotropic copolyester HBA/HQ/SA</td>
<td>C.-K. Chan and P. Gao</td>
</tr>
<tr>
<td>11:25</td>
<td>LC8</td>
<td>Cure characterization of nematic bismaleimide thermosets</td>
<td>H. Qin and P. T. Mather</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:05</td>
<td>AS18</td>
<td>The rheology of charged, worm-like micelles</td>
<td>B. A. Schubert, N. J. Wagner and E. W. Kaler</td>
</tr>
<tr>
<td>8:30</td>
<td>AS19</td>
<td>Determination of the end cap energy of worm-like micelles</td>
<td>M. In</td>
</tr>
<tr>
<td>8:55</td>
<td>AS20</td>
<td>Unsteady motion of bubbles and spheres in wormlike micellar solutions</td>
<td>A. L. Belmonte and A. Jayaraman</td>
</tr>
<tr>
<td>9:45</td>
<td>AS22</td>
<td>Micro rheological investigation of the dynamics of colloidal particles dispersed in solutions of associative polymers</td>
<td>Q. Lu and M. J. Solomon</td>
</tr>
<tr>
<td>10:10</td>
<td>AS23</td>
<td>Effects of surfactant and salt addition on the rheology of HASE polymers</td>
<td>C. Tu, A. K. M. Lau and M. K. C. Tam</td>
</tr>
<tr>
<td>11:00</td>
<td>AS25</td>
<td>Association of surfactants and hydrophobically modified polyelectrolytes</td>
<td>R. H. Colby, N. Plucktaevesak and L. E. Bromberg</td>
</tr>
<tr>
<td>11:25</td>
<td>AS26</td>
<td>Micro rheological investigation of the dynamics of colloidal particles dispersed in solutions of associative polymers</td>
<td>Q. Lu and M. J. Solomon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:05</td>
<td>MS9</td>
<td>Reptation-based modeling of flow-induced polymer crystallization</td>
<td>P. L. Maffettone, S. Coppola and N. Grizzuti</td>
</tr>
<tr>
<td>8:30</td>
<td>MS10</td>
<td>The appearance of threads during early stages of shear-induced crystallization in isotactic polypropylene</td>
<td>H. Winter and N. Pogodina</td>
</tr>
<tr>
<td>8:55</td>
<td>MS11</td>
<td>Rheological studies of mesomorphic poly(diethylsiloxane)</td>
<td>H. Saxena, R. C. Hedden and C. Cohen</td>
</tr>
<tr>
<td>9:20</td>
<td>MS12</td>
<td>On-line conoscopic measurement of flow induced orientation in flexible polymers</td>
<td>R. L. Van Horn and H. H. Winter</td>
</tr>
<tr>
<td>9:45</td>
<td>MS13</td>
<td>Stress-optical properties of polystyrene and polycarbonate across the dynamic glass transition</td>
<td>H. H. Lee, J. A. Kornfield, G. Hay and K. Yoon</td>
</tr>
<tr>
<td>10:10</td>
<td>MS14</td>
<td>The effect of pressure on the rheological properties of molten polyethylene</td>
<td>H. E. Park and J. M. Dealy</td>
</tr>
<tr>
<td>10:35</td>
<td>MS15</td>
<td>High-pressure rheology of polymer melts plasticized with CO2: Experimental measurements and predictive viscoelastic scaling</td>
<td>J. R. Rover, J. M. DeSimone and S. A. Khan</td>
</tr>
<tr>
<td>11:00</td>
<td>MS16</td>
<td>Novel cuvette rheometer for high pressure, high temperature systems</td>
<td>G. Gappert and H. H. Winter</td>
</tr>
<tr>
<td>11:25</td>
<td>MS17</td>
<td>Fluorescence microscopy experiments and Brownian dynamics simulations of flow behavior of DNA molecules confined to two dimensions</td>
<td>D. J. Olson, P. D. Patel, E. G. Shaqfeh, S. G. Boxer and G. G. Fuller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:05</td>
<td>MR1</td>
<td>The physics of the actin cytoskeleton: From nonequilibrium polymer physics to nerve regeneration and cancer diagnosis</td>
<td>J. A. Kas</td>
</tr>
<tr>
<td>8:30</td>
<td>MR2</td>
<td>Viscoelasticity of dilute solutions of semiflexible polymers</td>
<td>M. Pasquali, V. Shankar and D. C. Morse</td>
</tr>
<tr>
<td>8:55</td>
<td>MR3</td>
<td>Stress and conformational relaxation of dilute semiflexible polymer solutions</td>
<td>P. Dimitrakopoulos, J. F. Brady and Z.-G. Wang</td>
</tr>
<tr>
<td>9:20</td>
<td>MR4</td>
<td>Brownian dynamics simulations of single DNA molecules in steady and transient mixed flow</td>
<td>J. S. Hur and E. G. Shaqfeh</td>
</tr>
<tr>
<td>9:45</td>
<td>MR5</td>
<td>Single-polymer dynamics in steady mixed flows</td>
<td>H. Babcock, R. Teixeira, E. G. Shaqfeh and S. Chu</td>
</tr>
<tr>
<td>10:10</td>
<td>MR6</td>
<td>Fluorescence microscopy experiments and Brownian dynamics simulations of flow behavior of DNA molecules confined to two dimensions</td>
<td>D. J. Olson, P. D. Patel, E. G. Shaqfeh, S. G. Boxer and G. G. Fuller</td>
</tr>
<tr>
<td>10:35</td>
<td>MR7</td>
<td>Entanglement relaxation and release in model polymer melts</td>
<td>J. A. McCormick, C. K. Hall and S. A. Khan</td>
</tr>
<tr>
<td>11:00</td>
<td>MR8</td>
<td>Non-equilibrium brownian dynamics studies of dendrimers and hyperbranched polymers</td>
<td>A. T. Lee and A. J. McHugh</td>
</tr>
</tbody>
</table>
11:50 **LC9.** Recoverable compliance and viscosity of aligned block copolymer lamellae.
N. P. Balsara, H. Hahn and H. Watanabe

L. C. Cerny and E. R. Cerny

MS17. Standard reference materials: Non-Newtonian fluids for rheological measurements.
C. R. Schultheisz and G. B. McKenna

MR9. Grabbing the cat by the tail: Manipulating polymers one by one.
J. C. Macosko and C. J. Bustamante
Poster Session

Monday 5:30 PM Savannah Foyer North

PO1. Elongational viscosity measurements of polymer melts using semihyperbolic convergent dies. *P. D. Patil, S. Petrovan and J. Collier*

PO2. Transient and steady three-dimensional drop deformation under elongational flow. *Y. T. Hu*

PO3. High pressure capillary viscometer. *E. J. Paul, R. K. Prud’homme, S. P. Wesson and R. Clark*

PO4. Kinks vs. curves: An examination of the slope discontinuity in capillary flow. *M. T. Shaw and E. M. C. Cua*

PO5. In-line rheometry of shear-thinning and shear-thickening complex fluid systems by UVP-PD method. *P. Fischer, J. Skaiık, B. Ouriev and E. J. Windhab*

PO6. Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. *P. Fischer*

PO8. The orientation process of cholesteric liquid crystals with D-(+)-Mannose as chiral inductor. *E. G. Fernandes Jr. and M. R. Alcantara*

PO9. Vector chromatography: Modeling micropatterned separation devices. *K. D. Dorfman and H. Brenner*

PO10. Sedimentation of symmetric bodies in an Oldroyd-B fluid. *A. Vaidya, G. Galdi and A. Sequeira*

PO11. An experimental study of the mixing of dough. *D. M. Binding and M. A. Couch*

PO12. Preparing constant viscosity solutions by blending gelatins of different molecular weights. *R. W. Connelly*

PO13. Rheology of whey protein isolate/pectin mixed gels. *M. Beaulieu and S. Turgeon*

PO14. The relationship between rheology, application method, and final coating structure. *B. G. Dimetry and D. Bousfield*

PO15. DMA properties of sheet molding compounds (SMC). *F. Parsi, B. Clark and S. Gullerud*

PO16. Thixotropic properties of aqueous dispersions of positively charged Al/Mg mixed metal hydroxides. *D. Sun, W. Hou and C. Zhang*

PO17. Yield stress measurement of silicon nitride mixture suspensions. *L. Zhu, D. De Kee and K. Papadopoulos*

PO18. Properties of the forpolymer of N-vinyl pyrrolidine with itaconic acid, acrylamide and 2-acrylamido-2-methyl-propanesulfonic acid as fluid loss reducer for drilling fluid at high temperature. *Y. Wu, D. Sun, B. Zhang and C. Zhang*

PO19. Rheological and transport properties of suspensions. *A. E. Kaiser and A. L. Graham*

PO20. On the effect of compatibilization on interfacial slip in polymer blends. *P. Van Puyvelde, Z. Oomen, G. Groeninckx, P. Moldenaers and J. Mewis*

PO21. Preparation of rubber toughened syndiotactic polystyrene blends by reactive compatibilization. *W.-M. Choi and O. O. Park*