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I. INTRODUCTION 
In the spring of 1981, the Executive Committee of the Society appointed an ad hoc 

nomenclature committee to recommend standard names and symbols for material func-
tions arising in the study of nonlinear viscoelasticity and of extensional flows. Two 
previous nomenclature committees1,2 had prepared nomenclature lists for linear vis-
coelastic functions and for viscometric flows, and the recommendations of those com-
mittees are summarized in Tables I and II. However, the increased use of large transient 
shear flows and extensional flows to study viscoelastic materials made it desirable to 
augment these lists. 

A tentative proposal was prepared by the Committee and sent to members of the 
Society at the end of 1982 along with a request for corrections and comments. The 
Committee studied the responses to this request and prepared a final report that was 

                                                 
a)Initially published in J. Rheol. 28, 181–195 (1984) and presented here with corrections and additions identi- 
fied by D. M. Husband, J. Rheol. 36, 409–410 (1992). 

TABLE I. Society of Rheology nomenclature for steady simple shear. 

Quantity Symbol S.I. units CGS units 

Direction of flow x1 or x m cm 
Direction of velocity gradient x2 or y m cm 
Neutral direction x3 or z m cm 
Shear stress σ Pa dyn cm–2 
Shear strain γ – – 
Shear rate !γ  s–1 s–1 
Viscosity η Pa s P (poise) 
First normal stress function N1 Pa dyn cm–2 
Second normal stress function N2 Pa dyn cm–2 
First normal stress coefficient Ψ1 Pa s2 dyn s2 cm–2 
Second normal stress coefficient Ψ2 Pa s2 dyn s2 cm–2 
Limiting viscosity at zero shear rate η0 Pa s P 
Limiting viscosity at infinite shear rate η∞ Pa s P 
Viscosity of solvent or of continuous 
medium 

ηs Pa s P 

Relative viscosity (η/ηs) ηr – – 
Specific viscosity (ηr – 1) ηsp – – 
Intrinsic viscosity [η] m3 kg–1 cm3 g–1 
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presented to the Executive Committee at the Knoxville meeting in October 1983. Pre-
sented here is the nomenclature approved at that time. 

The Committee wishes to acknowledge the helpful suggestions received from a num-
ber of members. Particularly useful were the thoughtful and extensive comments received 
from C. J. S. Petrie, J. Meissner, and W. Philippoff. 

This presentation commences with descriptions of a number of flows that have been 
introduced in the last 15 years for the study of viscoelastic materials. A number of 
material functions are defined, and symbols are specified for these. The names of the 
newly defined material functions and the corresponding symbols are listed in Tables III 
and IV. 

Members of the Nomenclature Committee: 

R. B. Bird W. W. Graessley 
J. M. Dealy (Chairman) K. F. Wissbrun 

 

TABLE II. Society of Rheology nomenclature for linear viscoelasticity. 

Quantity Symbol S.I. units 

Simple shear   
Shear strain γ – 
Shear modulus (modulus of rigidity) G Pa 
Shear relaxation modulus G(t) Pa 
Shear compliance J Pa–1 
Shear creep compliance J(t ) Pa–1 
Equilibrium shear compliance Je  Pa–1 
Steady-state shear compliance J s

0  Pa–1 
Complex viscosity η*(ω) Pa s 
Dynamic viscosity ′η ω( )  Pa s 
Out-of-phase component of η* ′′η ω( )  Pa s 
Complex shear modulus G*(ω) Pa 
Shear storage modulus ′G ( )ω  Pa 
Shear loss modulus ′′G ( )ω  Pa 
Complex shear compliance J*(ω) Pa–1 
Shear storage compliance ′J ( )ω  Pa–1 
Shear loss compliance ′′J ( )ω  Pa–1 

Tensile extension   

Strain (True strain) ε – 
Young’s modulus E Pa 
Tensile relaxation modulus E(t) Pa 
Tensile compliance D Pa–1 
Tensile creep compliance D(t) Pa–1 
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II. TRANSIENT SHEAR FLOWS 
All the tests and material functions defined below are based on a homogeneous 

simple shear flow, described as follows: 
 

 
v x
v v

1 2

2 3 0
=
= =
!γ

 

x1

x2

 
A. Start-up flow 

A sample, initially in its rest state, is subjected to a constant shear rate !γ  at time t = 0. 
The quantities measured are the shear stress σ and the normal stress differences N1 and 
N2, all as functions of t and !γ . The measurable material functions are as follows: 

TABLE III. Society of Rheology nomenclature for nonlinear viscoelasticity in shear. 
Quantity Symbol S.I. units 

Start-up flow   
Shear stress growth function σ+(t , !γ ) Pa 
Shear stress growth coefficient η+(t , !γ ) Pa s 
First normal stress growth function N1

+ (t , !γ ) Pa 
First normal stress growth coefficient Ψ1

+ (t , !γ ) Pa s2 
Second normal stress growth function N2

+ (t , !γ ) Pa 
Second normal stress growth coefficient Ψ2

+ (t, !γ ) Pa s2 
Cessation of steady shear flow   

Shear stress decay function σ–(t, !γ ) Pa 
Shear stress decay coefficient η–(t, !γ ) Pa s 
First normal stress decay function N1

− (t, !γ ) Pa 
First normal stress decay coefficient Ψ1

− (t, !γ ) Pa s2 
Second normal stress decay function N2

− (t , !γ ) Pa 
Second normal stress decay coefficient Ψ2

− (t, !γ ) Pa s2 
Step strain   

Shear stress relaxation function σ(t,γ) Pa 
Shear stress relaxation modulus G(t,γ) Pa 
First normal stress relaxation function N1(t,γ) Pa 
Second normal stress relaxation function N2(t,γ) Pa 

Creep and recoil   
Shear creep compliance J(t,σ) Pa–1 
Steady-state compliance Js(σ) Pa–1 
Recoil strain γr(t,σ) – 
Recoil function R(t,σ) Pa–1 
Ultimate recoil γ∞(σ) – 
Ultimate recoil function R∞(σ) Pa–1 

Superposed steady and oscillatory shear   
Parallel complex viscosity η||

∗ (ω, !γ m ) Pa s 
Orthogonal complex viscosity η⊥

∗ (ω, !γ m ) Pa s 
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Shear stress growth function: 
 σ γ σ+ ≡( , ! )t  

Shear stress growth coefficient: 
 η γ σ γ+ +≡( , ! ) !t  

First normal stress growth function: 
 N t1 11 22

+ ≡ −( , ! )γ σ σ  
First normal stress growth coefficient: 

 Ψ1 1
2+ +≡( , ! ) !t Nγ γ  

Second normal stress growth function: 
 N t2 22 33

+ ≡ −( , ! )γ σ σ  
Second normal stress growth coefficient: 

 Ψ2 2
2+ +≡( , ! ) !t Nγ γ  

TABLE IV. Society of Rheology nomenclature for nonlinear viscoelasticity in extension. 

Quantity Symbol S.I. units 

Tensile (simple) extension   
Tensile strain ε – 
Strain rate (≥0) !ε  s–1 
Net tensile stress σE Pa 
Tensile stress growth function σ E

+  Pa 
Tensile stress growth coefficient ηE

+ (t, !ε ) Pa s 
Tensile viscosity ηE Pa s 
Tensile stress decay coefficient ηE

− (t, !ε ) Pa s 
Tensile creep compliance D(t,σE) Pa–1 
Steady-state tensile compliance Ds(σE) Pa–1 
Tensile recoil function εr(t, !ε ) – 
Tensile recoil coefficient S(t, !ε ) Pa–1 
Ultimate tensile recoil ε∞(σE) – 
Ultimate tensile recoil coefficient S∞(σE) Pa–1 
Tensile stress relaxation modulus E(t,ε) Pa 

Biaxial extension (symmetric)   
Biaxial strain/strain rate (≥0) εB / !ε B  –/s–1 
Net stretching stress σB Pa 
Biaxial stress growth function σ B

+  Pa 
Biaxial stress growth coefficient ηB

+ (t, !ε B ) Pa s 
Biaxial stress decay coefficient ηB

− (t, !ε B ) Pa s 
Biaxial extensional viscosity ηB Pa s 

Asymmetric extension   
Largest principal strain rate !ε  s–1 
Strain ratio m – 
First net stretching stress σ1

( )m  Pa 
Second net stretching stress σ2

( )m  Pa 
First extensional viscosity η1

( )m  Pa 
Second extensional viscosity η2

( )m  Pa 
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Note 1: If the stresses approach steady-state values, we can make the following cor-
respondences with the viscometric functions: 
 [ ]lim ( , ! ) ( ! )

t
t

→ ∞

+ =η γ η γ , 

 [ ]lim ( , ! ) ( ! )
t

N t N
→ ∞

+ =1 1γ γ , 

 [ ]lim ( , ! ) ( ! )
t

N t N
→ ∞

+ =2 2γ γ . 

Note 2: If linear viscoelastic behavior is exhibited by the fluid of interest at very low 
!γ , the following relationships are valid: 

 [ ]lim ( , ! ) ( )
!γ

η γ η
→

+ +=
0

t t , 

 [ ]lim ( , ! ) ( )
!γ

γ
→

+ +=
0 1 1Ψ Ψt t , 

 [ ]lim ( , ! ) ( )
!γ

γ
→

+ +=
0 2 2Ψ Ψt t . 

B. Cessation of steady shear flow 
A fluid that has been subjected to steady simple shear flow at a rate !γ , until its 

stresses are steady, is brought suddenly to rest at time t = 0. The stresses are monitored as 
functions of time, and the measurable material functions are as follows: 

Shear stress decay function: 
 σ γ σ− ≡( , ! )t  

Shear stress decay coefficient: 
 η γ σ γ− −≡( , ! ) !t  

First normal stress decay function: 
 N t1 11 22

− ≡ −( , ! )γ σ σ  
First normal stress decay coefficient: 

 Ψ1 1
2− −≡( , ! ) !t Nγ γ  

Second normal stress decay function: 
 N t2 22 33

− ≡ −( , ! )γ σ σ  
Second normal stress decay coefficient: 

 Ψ2 2
2− −≡( , ! ) !t Nγ γ  

Note: If the fluid of interest exhibits linear viscoelasticity in the limit of small shear 
rates, the following relationships are valid: 
 [ ]lim ( , ! ) ( )

!γ
η γ η

→

− −=
0

t t , 

 [ ]lim ( , ! ) ( )
!γ

γ
→

− −=
0 1 1Ψ Ψt t , 
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 [ ]lim ( , ! ) ( )
!γ

γ
→

− −=
0 2 2Ψ Ψt t . 

C. Step strain 
A material initially in its rest state is subjected to a sudden shear strain of magnitude γ 

at time t = 0, and the stresses are observed as functions of time. 
Shear stress relaxation function: 

 σ γ σ( , )t ≡  
Shear stress relaxation modulus: 

 G t( , )γ σ γ≡  
Note: In the case of linear viscoelastic behavior, 

 [ ]lim ( , ) ( )
γ

γ
→

=
0

G t G t  

First normal stress relaxation function: 
 N t1 11 22( , )γ σ σ≡ −  

Second normal stress relaxation function: 
 N t2 22 33( , )γ σ σ≡ − . 

D. Creep 
A material initially at rest is subjected to a constant shear stress σ at time t = 0. The 

shear strain γ is monitored as a function of time. 
Shear creep compliance: 

 J t( , )σ γ σ≡  
Alternatively, one can monitor the shear rate as a function of time. 
Shear creep rate decay function: 

 ! ( , ) !γ σ γ− ≡t  
The relationship between the stress and shear rate is defined as the shear creep rate 
coefficient: 
 η σ σ γc t+ −≡( , ) ! . 
The shear creep rate coefficient is the quantity determined in creep which is analogous to 
the shear stress growth coefficient η+ (t, !γ ) determined in a constant shear rate test. 

If the material of interest is a fluid, so that the strain ultimately becomes linear with 
time, the compliance curve can be extrapolated to t = 0 to determine the steady-state 
compliance Js. Thus, in the linear portion of the curve, the shear creep rate coefficient 
becomes constant, and the shear creep compliance is given by 
 J t J ts( , ) ( )σ σ η= + , 

where η η σ≡ +
c ( )  is evaluated at the shear rate corresponding to σ. 

Note: When the material of interest exhibits linear viscoelastic behavior at small 
shear stresses, we have: 
 [ ]lim ( , ) ( )

σ
σ

→
=

0
J t J t  
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and 
 [ ]lim ( , ) ( )

σ
η σ η

→

+ +=
0 c ct t , 

and, after the strain becomes a linear function of time: 
 J t J ts( ) = +0

0η , 

where Js
0  is the steady-state compliance in the limiting case of small stress and η η0 ≡ +

c  
is the limiting viscosity at zero shear rate. 

E. Recoil 
A fluid in which the shear stress σ and the shear rate !γ  are constant in time has its 

shear stress reduced to zero at time t = 0 while being constrained in the x2 direction. The 
recoil strain is monitored as a function of time, and is considered positive when it is in a 
direction opposite to that of the original shearing motion: 

Recoil strain: 
 γ γ γr t≡ −( ) ( )0  

Recoil function: 
 R t r( , )σ γ σ≡  

Ultimate recoil: 
 [ ]γ σ γ σ∞ → ∞

=( ) lim ( , )
t r t  

Ultimate recoil function: 
 [ ]R R t

t∞ → ∞
≡( ) lim ( , )σ σ  

Note 1: Since σ ηγ= !  at t = 0, the strain rate can be used in place of the stress as an 
independent variable. 

Note 2: If linear viscoelastic behavior is exhibited in the limit of small initial stress, 
we have: 
 [ ]lim ( , ) ( ) ( )

σ
σ η

→
= = −

0 0R t R t J t t , 

 [ ]lim ( )
σ

σ
→ ∞ ∞≡ =

0

0 0R R Js . 

Note 3: Recoil experiments are sometimes performed by releasing the stress in a 
creep experiment at some time t0, before the strain has become linear in time. In this case 
the functions defined above can still be used, but the new independent variable must be 
noted. For example, 
 γ σ γ γr t t t t t( , , ) ( ) ( )− ≡ −0 0 0 . 

F. Superposed parallel steady and oscillatory shear flow 
The shear rate is the sum of a constant (mean) value ( !γm ) and an oscillatory compo-

nent 
 ! ( ) ! cosγ γ γ ω ωt tm= + 0 . 



260 DEALY 

If the amplitude of oscillation, γ0, is sufficiently small that the resulting shear stress is a 
sum of a mean value σm and a sinusoidal component, we have: 
 σ η γ γm m m= ( ! ) ! , 

 σ σ σ ω δ= + +m t0 sin( ) , 

where σ0 is the amplitude of the sinusoidal component and δ is the mechanical loss 
angle. 

The parallel complex viscosity has the following real and imaginary components: 
 ′ ≡η ω γ σ ωγ δ| | ( , ! ) ( )sinm 0 0 , 

 ′′ ≡η ω γ σ ωγ δ| | ( , ! ) ( ) cosm 0 0 . 

G. Superposed orthogonal steady and oscillatory shear flow 
In this case the steady shear is in the 1–2 plane, while the oscillatory component is in 

the 2–3 plane: 
 v xm1 2= !γ , 

 v2 0= , 

 v t x3 0 2= ( cos )γ ω ω . 

In other words, the rate of deformation tensor* has the following form: 

 
0 0

0
0 0

0

0

!

! ( cos )
( cos )

γ
γ γ ω ω

γ ω ω

m

m t
t

















. 

If the amplitude of oscillation, γ0, is sufficiently small that the shear stress component 
σ23 is sinusoidal, we have: 
 σ σ ω δ23 0= +sin( )t , 

and the orthogonal complex viscosity has the following real and imaginary components: 
 ′ ≡⊥η ω γ σ ωγ δ( , ! ) ( )sinm 0 0 , 

 ′′ ≡⊥η ω γ σ ωγ δ( , ! ) ( ) cosm 0 0 . 

III. EXTENSIONAL FLOWS 

A. Tensile (simple) extension 
The material functions defined below are based on the homogeneous simple extension 

of a fluid with constant density. 
 v x1 1= !ε , 

 v x2
1
2 2= − !ε , 

                                                 
* The rate of deformation tensor is defined here as ( )∇∇∇∇ ∇ ∇∇∇v v+ T . 
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 v x3
1
2 3= − !ε , 

where !ε ≥ 0 . 
Note 1: This is an axisymmetric flow and can be described alternatively in terms of 

cylindrical coordinates: 
 v zz = !ε , 

 v rr = − 1
2 !ε . 

Note 2: The parameter !ε  appearing in the velocity distribution is the true strain rate. 
Thus, ε is the true strain, defined as 
 ε ≡ ln( )L L0 . 

1. Tensile start-up flow 
A sample initially in its rest state is subjected to a constant extensional (true) strain 

rate !ε  at time t = 0. The “net tensile stress” σE is monitored as a function of time. 
 σ σ σ σ σ σ σE zz rr≡ − = − = −11 22 11 33 . 

Tensile stress growth coefficient: 

 η ε σ εE Et+ ≡( , ! ) !  

Tensile viscosity: 

 [ ]η ε η εE t E t(! ) lim ( , ! )=
→ ∞

+  

Note 1: If the material of interest tends toward linear viscoelastic behavior at small 
strain rates, the following relationships are valid: 

 [ ]lim ( , ! ) ( ) ( )
!ε

η ε η η
→

+ + += =
0

3E Et t t , 

 [ ]lim (! )
!ε

η ε η
→

=
0 03E . 

Note 2: Some researchers prefer to use the strain ε as an independent variable in place 
of time when presenting tensile stress growth results. 

2. Cessation of steady tensile extension 
A material that has been subjected to steady tensile extension at a strain rate !ε  until 

the net tensile stress is constant in time is brought suddenly to rest at time t = 0, and the 
net tensile stress is monitored as a function of time. 

Tensile stress decay coefficient: 

 η ε σ εE Et− =( , ! ) ! . 

Note: If the material of interest tends toward linear viscoelastic behavior at small 
strain rates: 

 [ ]lim ( , ! ) ( ) ( )
!ε

η ε η η
→

− − −= =
0

3E Et t t . 
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3. Tensile creep 
A sample initially at rest is subjected to a constant net tensile stress σE, at time t = 0, 

and the true strain ε is monitored as a function of time. 
Tensile creep compliance: 

 D t E E( , )σ ε σ≡  
Alternatively, one can monitor the extensional strain rate as a function of time. 

Tensile creep rate decay function: 
 ! ( , ) !ε σ ε− ≡t E  
The relationship between the stress and strain rate is defined as the tensile creep rate 
coefficient: 
 η σ σ εE c E Et, ( , ) !+ −≡ . 

The tensile creep rate coefficient is the quantity determined in creep which is analogous 
to the tensile stress growth coefficient ηE

+  determined in a constant strain rate test. 
If the material of interest is a fluid, then, after the strain becomes linear with time, the 

tensile creep rate coefficient becomes constant, and the tensile creep compliance is given 
by 
 D t D tE s E E( , ) ( )σ σ η= + , 

where Ds is the steady-state tensile compliance, and η η σE E c E≡ +
, ( )  is evaluated at the 

steady strain rate corresponding to σE. 
Note: If the behavior of the material of interest tends toward linear viscoelasticity at 

small values of stress, we have: 
 [ ]lim ( , ) ( ) ( )

σ
σ

E

D t D t J tE→
= =

0

1
2  

and 

 [ ]lim ( , ) ( ) ( ), ,σ
η σ η η

E
E c E E c ct t t

→

+ + += =
0

3 , 

and, after the strain becomes a linear function of time: 
 D t D ts E( ) ,= +0

0η , 

where Ds
0  is the steady-state tensile compliance in the limiting case of small stress and 

η ηE E c, ,0 ≡ +  is the limiting tensile viscosity at zero extension rate. 

4. Tensile recoil 
A material in which the stresses and the strain rate !ε  are steady in time has its tensile 

stress σE reduced suddenly to zero at time t = 0, and the recoil strain εr is monitored as 
a function of time. 

Tensile recoil strain (a positive quantity): 
 ε ε εr t≡ −( ) ( )0  

Tensile recoil function: 
 S t E r E( , )σ ε σ≡  

Ultimate tensile recoil: 
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 [ ]ε σ ε σ∞ → ∞
≡( ) lim ( , )E t r Et  

Ultimate tensile recoil function: 
 S E E E∞ ∞=( ) ( )σ ε σ σ  

Note 1: Since σ η εE E= !  at t = 0, the strain rate can be used in place of the stress as 
an independent variable. 

Note 2: If the material of interest tends toward linear viscoelastic behavior at small 
stresses: 
 [ ]lim ( , ) ( ) ( )

σ
σ

E

S t S t R tE→
= =

0

1
3 . 

Note 3: Recoil experiments are sometimes performed by releasing the stress in a 
creep experiment at some time t0, before the strain has become linear in time. In this case, 
the functions defined above can still be used, but the new independent variable must be 
noted. For example, 
 ε σ ε εr Et t t t t( , , ) ( ) ( )− ≡ −0 0 0 . 

5. Tensile step strain 
A material initially in its rest state is subjected to a sudden strain of magnitude ε at 

time t = 0, and the net tensile stress is observed as a function of time. 
Tensile stress relaxation modulus: 

 E t E( , )ε σ ε≡  
Note: If the material of interest tends toward linear viscoelastic behavior at small 

values of strain: 
 [ ]lim ( , ) ( ) ( )

ε
ε

→
= =

0
3E t E t G t . 

B. Biaxial extensional flow (axisymmetric) 
This flow is defined as follows for a fluid with constant density: 

 v xB1 1= !ε , 

 v xB2 2= !ε , 

 v xB3 32= − !ε , 
where !εB ≥ 0 . 

Note: This flow is axisymmetric and can be described in a cylindrical coordinate 
system as follows: 
 v rr B= !ε , 

 v zz B= −2 !ε . 

1. Biaxial start-up flow 
A sample initially in its rest state is subjected to a constant biaxial strain rate !εB  at 

time t = 0, and the net stretching stress σB is monitored as a function of time. 
 σ σ σ σ σ σ σB rr zz≡ − = − = −11 33 22 33 . 
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Biaxial stress growth coefficient: 

 η ε σ εB B B Bt+ ≡( , ! ) !  

Biaxial extensional viscosity: 

 [ ]η ε η εB B t B Bt(! ) lim ( , ! )=
→ ∞

+  

Note 1: If the material of interest tends toward linear viscoelastic behavior at small 
strain rate: 

 [ ]lim ( , ! ) ( ) ( )
!ε

η ε η η
B

B B Bt t t
→

+ + += =
0

6 , 

 [ ]lim (! )
!ε

η ε η
B

B B→
=

0 06 . 

Note 2: Those calculating the predictions of constitutive equations may prefer to 
show results for both steady tensile flow and steady biaxial extension on a single plot. 
This can be accomplished by noting that axisymmetric biaxial extensional flow can be 
considered to be tensile flow at a negative strain rate. For example, let η ε(! )  be an 
extensional viscosity defined only for axisymmetric flows, where !ε  can take on both 
positive and negative values. This material function is then defined as follows: 
 η σ σ ε≡ −( ) !zz rr . 

The following correspondences can then be made with the functions described above: 
 η ε η ε(! ) (! )= E ,  for  !ε ≥ 0 , 

 η η= 1
2 B   with  ! !ε ε= −2 B ,  for  !ε ≤ 0 . 

Note that η  is positive for all values of !ε . 

C. Extensional flow (general) 
Tensile extension and biaxial extension are two special cases of a class of flows for 

which the components of the rate of deformation tensor have been shown by Stevenson, 
Chung, and Jenkins3 to have the following form: 

 !

( )
ε

1 0 0
0 0
0 0 1

m
m− +

















 

Meissner et al.4 have pointed out that if !ε  is interpreted as the largest principal strain rate, 
and m does not vary with time, then every possible extensional flow corresponds to some 
value of m between –0.5 and +1.0. 

Unless the flow is axisymmetric, two independent normal stress differences can, in 
principle, be measured: 
 σ σ σ1 11 22≡ − , 

 σ σ σ2 22 33≡ − . 
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Thus, two independent material functions can be defined for a given value of m and a 
given strain or stress history. For example, if !ε  is constant, two extensional viscosities 
can be defined: 

 η σ ε1 1
( ) !m ≡ , 

 η σ ε2 2
( ) !m ≡ . 

We note that m = –1/2 corresponds to simple extension, while m = 1 corresponds to 
biaxial extension. However, in these cases there is only one independent normal stress 
difference, and the special symbols proposed for these flows should be used rather than 
the ones defined above. Another special case of interest is “planar” extension, for which 
m = 0. The most easily measured stress difference is σ1, and a planar extensional viscosity 
can be defined as follows: 

 η ε η εp (! ) (! )( )≡ 1
0 . 
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