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I. INTRODUCTION 

A systematic standardized twmenclature is very desirable to 
facilitat,e communication among physicists working in the same 
field or in associated fields; such a nomenclature gives names and 
symbols t,o measurable relat,ed quantities. After the fundamentals 
of a branch of physics are fairly well established, it is then possible 
to dram up a logical complete nomenclature system. linfortunately, 
hy that time the field is usually burdened with several systems which 
are not generally awept,ed and which are not completely logical; 
these systems may or may not he related to nomenclature systems 
in associated branches of physics. 

Ideal nomenclature systems which are prepared subsequent to the 
understanding of t)he relationships hetween measurable quant,ities in a 
branch of physics are often proposed. They may represent radical 
departures from more or less established usage; under these circum- 
stances the proposals do not gain general acceptance. A practical 
improvement, on a haphazard noustandardized nomenclature can 
only he gained by adhering as closely as possible t,o existing usage. 
In this report an attempt has been made to devise a nomenclature 
following this principle. 

When cert,ain materials are deformed such that the stored elastic 
energy and the rate of dissipation of merh:~.niral energy are sufficiently 
small, then the mechanical behavior of tl ese materials approximates 
to the idealized behavior known as linear oiscoelastic behavior, which 
may be defined in general by equat,ions such as (1) and (2) given 

* This is the final report of the Committec~ on Nomenclature of the Society of 
Ithrolopy. 
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below. This report, deals wit,h a proposed nomenclature for primary 
measurable quantities and for related quantities applicable to iso- 
tropic materials manifesting (approximate) linear viscoelastic be- 
havior. While this nomenclature is planned primarily in order to 
systematize the somewhat extensive literature on the behavior of 
amorphous polymeric systems, it is also adaptable, perhaps with 
some modifications, t,o other materials such as inorganic glasses and 
metals. The proposed nomenclature is given in Table II, which con- 
tains primary measurable quantities. In Table III are given certain 
auxiliary quantities, namely, limiting values and spect,ra. No at- 
tempt has been made t’o make t,his nomenclature consistent with the 
nomenclature for dielectric behavior, since in practice only one of 
the four primary methods of presenting data considered in this re- 
port is used in the specificsatjion of dielectric behavior. Furt,her- 
more, no attempt has been made to prepare a complete system of no- 
menclature. For materials manifest,ing linear viscoelastic behavior, 
many different methods of spetaifying behavior are possible; in the 
present proposed nomcnclat,urc a minimum number of measurable 
and related quantities are defined. The text of this report gives the 
basis for t.he nomenclature, and some of the relations between the 
quantities specified in Tables II and III. For the reasons given 
above, generally accepted usage has been followed as much as pos- 
sible. 

II. STEP-FUNCTION AND DYNAMIC MODULI 
AND COMPLlANCES 

The linear viscoelastic behavior of a material (at a given tempera- 
ture) is generally specified by t’he response of the material in certain 
types of experiment,. While any reasonable type of experiment is 
theoretically acceptable, in prachtice four types of experiment are 
customarily considered for the specification of viscoelastic behavior. 
Linear viscoelastic behavior may be specified in general by either 
of the equivalent relat,ions: 

t(t) = s t do(u) 
-m 

du k(t-u) du 

a(t) = 
s 

t de(u) 
---- m( t - u) du 

em du 



where c(t) is a strain and u(t) is a stress at t,ime t, and k(t) and m(t) 

are time-dependent functions of the dimensions, respectively, of 
compliance and modulus; these funrtions represent the viscoelastic 
properties of the maherial. It is seen that, if a unit stress is applied 
instant,aneously, that is, stepwise (and maintained constant there- 
after), then the strain at time t is given by /c(t). Similarly, if a unit 
strain is applied stepwise at zero time, then the stress at time t is 
m.(tj. The functions k(t) and m(t) define, respectively, the creep com- 
pliance and relaration modulus functions. 

From equation (1) it can be shown t,hat if the stress is varying 
sinusoidally with time with circular frequency w, then in the steady 
state the strain varies sinusoidally with time, and the amplitude of the 
strain is proportional to the amplitude of the stress. In general, the 
strain differs in phase from the stress, so under these conditions the 
ratio of strain to stress can be represented by a frequenry-dependent, 
compler compliance k*(w). Thus the complex compliance represents 
in phase and amplitude the strain response, as a function of fre- 
quency, to a sinusoidal stress of unit. amplitude. Similarly, if the 
stress is varying sinusoidally with time, then from equation (2) it can 
be shown that the ratio of stress to strain can be represented by a 
frequency-dependent complex modulus m*(w). 

TABLE I 
Symbols and Terminology for Moduhks and Compliance 

Type of Modu- COtll- 
deformat.ion Remarks lus, ?Q pliance, k 

Shear G J 
Bulk (volume) K H 
Longitudinal (a) No transwrsr stress. Strain E D 

measured longitudinally 
Longitudinal (1)) No transvrrse strain. Stress Af (N! 

measured longitudinally 
1,ongitudinal (c) No transvrrse stress. St,rain - - 

measwrd laterall> 
Longitudinal (d) No trnnsvrrsc strain. Stress (Xl - 

measured laterally 

The above time- or frequency-dependent moduli and compliances 
are relat,ed to the moduli and compliances of classical elasticity 
theory. These are given in Table 1. It is seen from the table that 
there are four cross-measures, involving a transverse st,rain (or stress) 
and a longit,udinal stress (or strain) ; one of these is the Lam6 con- 



stattt A. These four measures seetn to be of limited use in represent,a- 
tiort of viscoelast,ic behavior, and will not be considered further. 
The compliatwe N has ttot yet, been used in visr:oelast~i&y ; it is in- 
trodwed here for c~ompleteuess. 

III. RELATIONS BETWEEN STEP-FUNCTION MODULI 
AND COMPLIANCES 

In this report definitions arc proposed for three creep romplianws, 
namely, t,he shear creep compliance J(t), the bulk (or volume) creep 
compliance B(t), and t,he lottgituditlal creep c~ompliancc D(t). The 
corresponding relaxation moduli are dertot,ed hy G(t), K(t), and E(t). 
The relations bet,ween the moduli and compliances of classical elas- 
ticity theory are analogous to the relations between t,he Carson 
transforms of the time-dependent st,ep-function moduli and cotn- 
pliances given above, where the Carson transform of a creep com- 
pliance k(t) is given hy: 

and similarly for t,he Carsott transform of a relaxation modulus. 
Thus, for example, t,he relatiott bet,ween a creep compliattce k(t) and 
its associated relaxation modulus m,(t) is given by: 

PC(WJ = llG{W)l 

IV. METHODS OF REPRESENTATION OF DYNAMIC 
BEHAVIOR 

Dynamic behavior refers to the respottsc of a material manifesting 
linear viscoelasticity when t,he stress and strain vary sinusoidally 
wit,h time. The strain catt 1~ cwnsidered as cwtsisting of two cotn- 
ponettts, oue itt phase wit,h t,he stress atld t,he ot,her lagging 90”. The 
ratio of the amplit,udc of the former compotlettt to the amplitude of 
the stress is the storage compliance, k’(w). The ratio of the amplitude 
of the latter wmpottent to the amplitude of the stress is the loss 
compliance, k”(w). Xlt~erttati\~t:ly, tttcb st)rrss (aan he considered as 
consisting of t\ro ~~~tt~po~~c~~t~s, one in phase with the st.raitt, and the 
other leadittg by 90”. The ratio of the amplitude of the former com- 
ponent to the amplitude of t,he strain is t.he storage modulus, m’(w) ; 



the ratio of the amplitude of the latter caomponent to the amplitude 
of the strain is the loss modulus, m”(w). Thus in general: 

x*(w) = k’(w) - jk”(w) (3) 
and: 

m*(w) = m.‘(w) + ,jk”(w) 

The absolute modzhs, Im(w) (, is given by : 

/m(w)1 = [m’“(w) + m”2(~)]“2 

and the absolute compla’ancr, (k(w) 1, is given by: 

Ik(W)l = [X'?(W) + k"'(U)]"p 

The loss tangent or damping, tan 6, is given by: 

(4) 

(5) 

(6) 

tan 6 = m”(w) /m’(w) = liV(~)/ViO) (7) 

The quantity m”(wj,/w has the dimensions of viscosity and is geuerally 
called the dynamic viscosity, v’(w). 

TABLE II 
Primary ;1Iettti~~Me Qmntities 

Type of deform:ttio~~ 

Imngi- Longi- 
trdinal (a) tdinal (I)) 
(no lateral (no lateral 

Shwl Hldk stress) strain) 
Creep compliance 
Relaxation modulus 
Storage compliancr 
Loss romplianw 
Storage modulns 
Loss motlulr~s 
Complex compliance 
Complcs modulus 
A)&utr compliance 
Ahsolut’e modulus 
Loss t:trrgent (damping) 
I)ynamir viscosit) 

AtI 
G(t) 
J’(w) 
J”(W) 
G’(w) 
G”(w) 
d*(w) 
G*(w) 

~;:I;~ 
tan 6, 
q.‘(w) 

B(t) iI(t) 
K(t) E(t) 
B’(w) .w,) 
B”(w) D’(w) 
K’(w) E’(o) M’(,) 
KV(w) E”(w) M”(U) 
B*(w) D”(@) 
K’(w) ES(w) M*(w) 
IBbll 
INU)! 

/D(co)( - 
iEb)i I!W(W)( 

tan 6,. tan 61 tan 6, 
Vt’(W) VI’(W) ?P’(W) 

In printaiple, six moduli awl wmpliauws (‘an be defined (compare 
Table I). In prac+ice, three wmpliaucw aud four rnoduli are suf- 
ficient. The three complex complianws are t,hus the complex shear com- 
pliance, J*(w), the complex bulk compliance, R*(w), and the complex low 
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git?cdinal compliance, D*(w). The four moduli are, respectively, G*(w), 
K*(w), E*(w), and M*(U), Therelations between the complex moduli 
and complianres are t,he same as t,hose existing between the corre- 
sponding moduli and compliances of classical ela&icity t,heory. 
When necessary, values of t’an 6 and q’(w) corresponding to different, 
moduli may he distinguished by subscripts, thus tan 6,, tan 6,, 
tan S1, and tan 6, represent the loss tangents associated, respectively, 
with G*(U), K*(w), E*(w), and M*(w). Similarly, the corresponding 
dynamic visrosities may he denoted by Q’(U), q,‘(o)), vi’(w), and 
%‘(W). 

The behavior of a material in st’ep-function or dynamic tests can 
thus be expressed in terms of the primary measurable quantities 
given in Table II. 

V. LIMITING VALUES 

In principle, certain limiting values exist, correspondjng to zero 
and infinite time in step-function experiments, and zero and infinite 
frequency in dynamic experiments. These limiting values are de- 
fined as follows: 

li, = /e,, /c(t) = lim k’(w) \ 
W-m I 

m 61 = lim m(I) = lim m’(w) \ (8) /+O Cd-m I 
Ii, = I ,lm, 1 

The quantities k, and m, are called, respe&ively, the glass compliance 
and glass mvdulus. The quanbity defined usually by: 

Il?J = ,I$ (dk(t);clt~ 1 

11 = lim ~J’(w) k (9) 
w + 0 1 

is called the viscosity. Similarly, t,he quantities k, and m, are defined 
by t’he relations: 

k, = litn (k(t) - t/q} = lim k’(w) 1 
1-b m w-0 I 

m, = lim m(t) = lim m’(w) 
i 

00) 
t-. m u-0 

li, = 1 /rn,, ifv= m J 
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The quantity k, may be called the npilibrium compliance for a 
wosslinked material, for whic+h the viswsity is infinit’e; otherwise, it, 
may t)r c4led the stead@& elastic compliance. The cp1antit.y m,. 
differs from zero only when the viscosity is infinite, in whicah case it 
may he cnalled the epwilibrium modulus. Jn practice these limiting 
values may be experimentally inaccessible; or they may not be de- 
terminable experimentally. 

VI. EQUIVALENT CONTINUOUS SPECTRA 

The creep compliances are related to the complex compliances, 
and the relaxation moduli are related to the complex moduli through 
retardation and relaxation spectra, respectively. These spectra may 
be in principle discrete, continuous, or mixed. Molecular theories of 
viscoelasticity of amorphous polymers lead to discrete spectra. Since 
it is not possible to obtain these from experimental data, it is custom- 
ary to obtain from esperimental data the equivalent continuous 
spectra defined below. 

The retardation spectrum L(t) is defined by t,he relationships: 

s 

m 
k(t) - k, - t/tj = (1 -r-“‘)L(T) din 7 ’ _m 

and the relaxation spectrum H(L) is defined by the relat,ionships: 

s 
cn \ 

m(t) - m, = c-‘W(7) cl In 7 
-m 

m’(w) - m, = 
J’ 

m WVH(T) ~~~.. .~-- /j In T 
-m 1 + WV ; 

mC(w) = 
s 

cc W&z(T) 
--------In7 

-m 1 + W2T2 / 

(12) 

When necessary, the retardation and relaxat’ion spectra for shear and 
for bulk deformation ran be dist,inguished by subscripts, thus we may 
wit,e H,(t) and L,(t) for shear, and H,(f) and LO(t) for bulk (volume) 



deformation. The terms rela.cation spectrum and retardation spectrum 
refer to the function over the range of values of t from zero to infinit,y. 
The value of H(t) at a specified value of i may be termed t,he spectru.Z 
strength at time t. The auxiliary quantities, namely, the limiting 
values and spectra, are list,ed in Table III. It will be not’iced that 
in this t,ahle the viscosity is charact,erized by a suffix when it is re- 
quired to distinguish between the longitudinal and shear viscosities; 
t,hc bulk viscosity of course does not exist. 

TABLE III 
.kusili:~r~ Qi~:mtitic~s 

Type of deformation 
Longitudin:tl 

(no trans- 
Qmmtit.> Shr:rr I3llIk YerYe FtrtYM) 

Glass compliitnce JO BO Do 
Eqrlilibrium complianrcb Jo Be De 
Steady-state ektic complisrrcc~ 
Glad modulrls c 70 Ko F JO 
IGl~lilihrium modulns G, k’, & 
Viscosit,y 7.7 91 
Rctardstion spectrum L,(t) L”(l) Ldt) 
R&sation spcrt,rum H,(t) Hv(t) H/(t) 

VII. DISCUSSION 

In this report a minimum of quarkities has been defined. It is 
observed that time- or frequenry-dependent quantities are system 
atically labeled, while limiting quantities are denoted by suffixes. 
In the system used in this report,, the connection between linear vis- 
roelast,icity and classical elasticity theory is apparent. For this rea- 
son, t,he more commonly used symbols for elastic moduli (G, K, E, 
and M) are adopted here. With regard to compliances, J is a gener- 
ally used symbol, as is also R. The symbol D has been adopt’ed for 
longitudinal compliance, replacing t,he previously used symbol F, to 
which objection was raised. Similarly, the symbol for the “dummy” 
compliance k replares t,he earlier symbol c. 

There are some difkulties \vith regard to nomenclature for the 
limiting values k,, m,, k,, and m,,. The suffixes zero and infinit’y do not 
give rise t,o confusion in t,he analogous but not so complete syst,em of 
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nomenclature for dielect,riv behavior; with linear viscoelasticity, 
however, their use is mljustified. The terms “initial” and “instan- 
t,aneous” modulus and compliance seem mlcertain. For amorphous 
polymers the appropriate modulus and compliance are often ob- 
tained as limiting values when the timescale is short enough at any 
given t,emperature, the material behaving under these conditions as an 
organic glass. On this account t,he terms glass modulus and glass 
c*ompliawe have been chosen, and these quantities have been denoted 
by m, and P,. I+‘or other materials, for example, metals, another 
term would be preferable. It does not seem likely that a term for 
these limiting values suitable for all categories of materials can be 
proposed. For the other limiting values, namely, k, and m,, the terms 
“static” and “ultimate” have been suggested. Here again these do 
not seem to be an improvement, over the terms proposed in this re- 
port. The letter suffix for t,he symbol should of course be related t,o 
the name adopted for the limiting value. For papers published in 
languages other than English, it would he desirable that the let,ter 
suffixes adopted be associat,ed with t,hc nomenclature for the limiting 
values in other languages. This desirable state of affairs would seem 
to be diffiwlt to accomplish. 

In the case of nonlinear behavior. t,he term L‘vis(wsit,y” is sometimes 
used to denote t,he ratio of shear stress to rate of shear in general, 
while the limiting value at very small values of the parameters is 
denoted by a term surh as “?r‘cwtwlian” viscosity. Since in this re- 
port we are dealing only mit,h linear behavior, it seems that such a 
modifying term is unnwessary hew. Ohjecations have heen raised to 
the term “dynamics viwosity” for m”(w) iw. Since this name is well 
established for a useful quantity, it has been adopt,ed in this report. 

Mwh of the material of previous preliminary versions of this re- 
port has been eliminated, in lille with the objective of def ning a mini- 
mum number of quant,itics iti order to promote uniform methods of 
reporting data. In theoretic-al treatment,s it may be convenient to 
define further functions, for ex:lmplc: 

It does not seem either necessary or desirable to standardize a nomen- 
clature for surh quant)ities at, this stage. 
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