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Behavior*

HERBERT LEADERMAN, National Bureau of Standards,
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I. INTRODUCTION

A systematic standardized nomenclature is very desirable to
facilitate communieation among physicists working In the same
field or in associated fields; such a nomenclature gives names and
symbols to measurable related quantitics. After the fundamentals
of a branch of physics are fairly well established, it is then possible
to draw up a logical complete nomenclature system. Unfortunately,
by that time the field is usually burdened with several systems which
are not generally accepted and which are not completely logical;
these systems may or may not be related to nomenclature systems
in associated branches of physics.

Ideal nomenclature systems which are prepared subsequent to the
understanding of the relationships between measurable quantities in a
branch of physics are often proposed. They may represent radieal
departures from more or less established usage; under these circum-
stances the proposals do not gain general acceptance. A practical
improvement on a haphazard nonstandardized nomenclature can
only be gained by adhering as closely as possible to existing usage.
In this report an attempt has been made to devise a nomenclature
following this principle.

When certain materials are deformed such that the stored elastic
energy and the rate of dissipation of mechsnical energy are sufficiently
small, then the mechanical behavior of tl ese materials approximates
to the idealized behavior known as linear viscoelastic behavior, which
may be defined in general by equations such as (1) and (2) given

* This is the final report of the Committee on Nomenclature of the Society of
Rheology.
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below. This report deals with a proposed nomenclature for primary
measurable quantities and for related quantities applicable to <se-
tropic materials manifesting (approximate) linear viscoelastic be-
havior, While this nomenclature is planned primarily in order to
systematize the somewhat extensive literature on the behavior of
amorphous polymeriec systems, it is also adaptable, perhaps with
some modifications, to other materials such as inorganie glasses and
metals. The proposed nomenclature is given in Table II, which con-
tains primary measurable quantities. In Table I11 are given certain
aurtliary quentities, namely, limiting values and spectra. No at-
tempt has been made to make this nomenclature consistent with the
nomenclature for dielectric behavior, since in practice only one of
the four primary methods of presenting data considered in this re-
port is used in the specification of dielectric behavior. Further-
more, no attempt has been made to prepare a complete system of no-
menclature. For materials manifesting linear viscoelastic behavior,
many different methods of specifying behavior are possible; in the
present proposed nomenclature a minimum number of measurable
and related quantities are defined. The text of this report gives the
basis for the nomenclature, and some of the relations between the
quantities specified in Tables II and III. For the reasons given
above, generally accepted usage has been followed as much as pos-
sible.

II. STEP-FUNCTION AND DYNAMIC MODULI
AND COMPLIANCES

The linear viscoelastic behavior of a material (at a given tempera-
ture) is generally specified by the response of the material in certain
types of experiment. While any reasonable type of experiment is
theoretically acceptable, in practice four types of experiment are
customarily considered for the specification of viscoelastie behavior.
Linear viscoelastic behavior may be specified in general by either
of the equivalent relations:

t do(u
et) = f-m d(ul,l) k(t—u) du (1)

_ A de(w)
o) = f,w L m(e—) du 2)
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where €(f) is a strain and o(#) is a stress at time ¢, and k(f) and m(¢)
are time-dependent functions of the dimensions, respectively, of
comphiance and modulus; these functions represent the viscoelastic
properties of the material. It is seen that, if a wndt stress is applied
instantaneously, that is, stepwise (and maintained constant there-
after), then the strain at time ¢ is given by k(¢). Similarly, if a uni¢
stratn is applied stepwise at zero time, then the stress at time ¢ is
m(t). The functions k(f) and m(Z) define, respectively, the creep com-
pliance and relaxation modulus functions.

From equation (1) it can be shown that if the stress is varying
sinusoidally with time with circular frequency w, then in the steady
state the strain varies sinusoidally with time, and the amplitude of the
strain is proportional to the amplitude of the stress. In general, the
strain differs in phase from the stress, so under these conditions the
ratio of strain to stress can be represented by a frequency-dependent
complex compliance k*(w). Thus the complex compliance represents
in phase and amplitude the strain response, as a function of fre-
quency, to a sinusoidal stress of unit amplitude. Similarly, if the
stress is varying sinusoidally with time, then from equation (2} it can
be shown that the ratio of stress to strain can be represented by a
frequency-dependent complex modulus m*(w).

TABLE I
Symbols and Terminology for Modulus and Compliance
Type of Modu- Com-
deformation Remarks lus, m  pliance, k

Shear G J

Bulk (volume) K B

Longitudinal (a) No transverse stress. Strain E D
measured longitudinally

Longitudinal (b) No transverse strain. Stress M (N)
measured longitudinally

Longitudinal (¢) No transverse stress, Strain — —
measured laterally

Longitudinal (d) No transverse strain. Stress ) —

measured laterally

The above time- or frequency-dependent moduli and compliances
are related to the moduli and compliances of classical elasticity
theory. These are given in Table I. It is seen from the table that
there are four cross-measures, involving a transverse strain (or stress)
and a longitudinal stress (or strain); one of these is the Lamé con-
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stant . These four measures seem to be of limited use in representa-
tion of viscoelastic behavior, and will not be considered further.
The compliance N has not yet been used in viscoelasticity; it is in-
troduced here for completeness.

III. RELATIONS BETWEEN STEP-FUNCTION MODULI
AND COMPLIANCES

In this report definitions are proposed for three creep compliances,
namely, the shear creep compliance J (1), the bull (or volume) creep
compliance B(t), and the longitudinal creep compliance D(t). The
corresponding relaxation moduli are denoted by G(¢), K(t), and E(¢).
The relations between the moduli and compliances of classical elas-
ticity theory are analogous to the relations between the Carson
transforms of the time-dependent step-function moduli and com-
pliances given above, where the Carson transform of a creep com-
pliance k(2) 1s given by:

pf;) e P k() dt = pelk(t)}

and stmilarly for the Carson transform of a relaxation modulus.
Thus, for example, the relation between a creep compliance £(f) and
its associated relaxation modulus m(f) is given by:

peik} = 1/pe{mw)}

IV. METHODS OF REPRESENTATION OF DYNAMIC
BEHAVIOR

Dynamic behavior refers to the response of a material manifesting
linear viscoelasticity when the stress and strain vary sinusoidally
with time. The strain can be considered as consisting of two com-
ponents, one in phase with the stress and the other lagging 90°.  The
ratio of the amplitude of the former component to the amplitude of
the stress is the storage compliance, k’'(w). The ratio of the amplitude
of the latter component to the amplitude of the stress is the loss
compliance, 1"(w). Alternatively, the stress can be considered as
consisting of two components, one in phase with the strain, and the
other leading by 90°. The ratio of the amplitude of the former com-
ponent to the amplitude of the strain is the storage modulus, m'(w);



PROPOSED NOMENCLATURI

I
S

the ratio of the amplitude of the latter component to the amplitude
of the strain is the loss modulus, m"(w). Thus in general:

K () = B(w) — k() (3)
A AWy JroA@) 9/
and:
m*(w) = m'(w) + k" (w) 4)
The absolute modulus, ‘m(w) l, is given by:
m(w)| = [m'*w) + m"(w)]" ®)
and the absoluie compliance, { k(w) [, is given by:
k()] = [k%w) + £"(w)]” (6)
The loss tangent or damping, tan §, is given by:
tan 6 = m"(w)/m'(w) = £"(w)/k'(w) (7)

The quantity m”(w)/w has the dimensions of viscosity and is generally
called the dynamic viscosity, n'(w).

TABLE II
Primary Measurable Quantities
Type of deformation

Longi- Longi-
tudinal (a) tudinal (b)
(no lateral (no lateral

Quantity Shear Bulk stress) strain)
Creep compliance J(t) B(t) D(t —
Relaxation modulus G(t) K(t) E(¢) —
Storage complianee J(w) B'(w) D'(w) —
Loss compliance J"(w) B"(w) D" (w) -—
Storage modutlus '(w) K'(w) E'(w) M’ (w)
Loss modulus G"(w) K"(w) E"(w) M"(w)
Complex compliance JHw) B*w) D*w) —-
Complex modulus GH*w) K*w) E*w) M*(w)
Absolute compliance | ()] |B(w)| 1D(e)| —
Absolute modutus |G(w)] IK(w)| |E(w)]| |M{w)|
Loss tangent {(damping) tan 8, tan 8, tan 8; tan 8,
Dynamie viseosity 7, (w) 7./ (@) m'(w) 7y (@)

In principle, six moduli and compliances can be defined (compare
Table 1). In practice, three compliances and four moduli are suf-
ficient. The three complex compliances are thus the complex shear com-
pliance, J *(w), the complex bulk compliance, B*(w), and the complex lon-
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gitudinal compliance, D*(w). The four moduli are, respectively, G*(w),
K*(w), E*(w), and M*(w). Therelations between the complex moduli
and compliances are the same as those existing between the corre-
sponding moduli and compliances of classical elasticity theory.
When necessary, values of tan é and n’(w) corresponding to different
moduli may he distinguished by subscripts, thus tan 38, tan 4,
tan §,, and tan §, represent the loss tangents associated, respectively,
with *(w), K*(0), E*(w), and M*(w). Similarly, the corresponding
dynamic viscosities may be denoted by »7,/(v), 7./(v), 7./(w), and
7' (@)

The behavior of a material in step-function or dynamic tests can
thus be expressed in terms of the primary measurable quantities
given in Table I1.

V. LIMITING VALUES

In principle, certain limiting values exist, corresponding to zero
and infinite time in step-function experiments, and zero and infinite
frequency in dynamic experiments. These limiting values are de-
fined as follows:

k, = lim k@) = lim k'(w) )
t— 0 w—> © |
m, = lim m() = lim m'(w) )
t—0 @ —> ©
ky = 1/m, )X

The quantities k, and m, are called, respectively, the glass compliance
and glass modulus., The quantity defined usually by:
U/ = lim {dk(t)/dt} )
t— @
9
7 = lim 9'(w) J% @

w— 0

is called the viscosity. Similarly, the quantities k, and m, are defined
by the relations:

k., = lim {l.,'(t) — t/’n} = lim k'(w) \|

{— o w—0
m, = lim m{@) = Hm m'(w) (10)
f > o w—0

k. = 1/m, ifgp ==



MK 210
i aidg

The quantity &k, may be called the equelibrium compliance for a
crosslinked material, for which the viscosity is infinite; otherwise, it
may be called the steady-state elastic compliance. The quantity m,
differs from zero only when the viscosity is infinite, in which case it
may be called the equelibrium modulus. In practice these limiting
values may be experimentally inaccessible; or they may not be de-
terminable experimentally.

VI. EQUIVALENT CONTINUOUS SPECTRA

The creep compliances are related to the complex compliances,
and the relaxation moduli are related to the complex moduli through
retardation and relaxation spectra, respectively. These spectra may
be in principle discrete, continuous, or mixed, Molecular theories of
viscoelasticity of amorphous polymers lead to discrete spectra. Since
it is not possible to obtain these from experimental data, it is custom-
ary to obtain from experimental data the equivalent continuous
spectra defined below.

The retardation spectrum L(t) is defined by the relationships:

k() — ky, — t/n = fﬁ A—e "IL(r)dIn r
e L
Flw) —k, = J | —I-(;)'-‘r; din Tt (1
® L
Ew) — 1wy = f f’%} dlnr

and the relaxation specirum H(1) is defined by the relationships:

N

m(l) — m, = f e"""H(r)dIn + ‘

© et |
m'(w) — m, = f T-"}:—w(:% dinr (12)
® H
() = f_w]{ cﬁ;;M . J

When necessary, the retardation and relaxation spectra for shear and
for bulk deformation can be distinguished by subseripts, thus we may
write H(¢) and Li(t) for shear, and H,(t) and L,(t) for bulk (volume)
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deformation. The terms relaration spectrum and retardation spectrum
refer to the funetion over the range of values of ¢ from zero to infinity.
The value of H(f) at a specified value of ¢ may be termed the spectral
strength at time {. The auxiliary quantities, namely, the limiting
values and spectra, are listed in Table ITI. 1t will be noticed that
in this table the viscosity is characterized by a suffix when it is re-
quired to distinguish between the longitudinal and shear viscosities;
the bulk viscosity of course does not exist.

TABLE III
Auxiliary Quantities
Type of deformation

Longitudinal
(no trans-

Quantity Shear Bulk verse stress)
Glass compliance p B, Dy
Equilibrium compliance Je B. D,
Steady-state elastic compliance
Glass modulus Gy K, Eq
Equilibrium modulus e K, E.
Viscosity s — 71
Retardation spectrum Ly(t) L) Lit)
Relaxation spectrum H(t) H,(t) Hit)

VII. DISCUSSION

In this report a minimum of quantities has been defined. Tt is
observed that time- or frequency-dependent quantities are system
atically labeled, while limiting quantities are denoted by suffixes.
In the system used in this report, the connection between linear vis-
coelasticity and classical elasticity theory is apparent. Lor this rea-
son, the more commonly used symbols for elastic moduli (G, K, E,
and M) are adopted here. With regard to compliances, ./ is a gener-
ally used symbol, as is also B. The symbol D has been adopted for
longitudinal compliance, replacing the previously used symbol F, to
which objection was raised. Similarly, the symbol for the “dummy”
compliance k replaces the earlier symbol c.

There are some difficulties with regard to nomenclature for the
limiting values k,, m,, k., and m,. The suffixes zero and infinity do not
give rise to confusion in the analogous but not so complete system of
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nomenclature for dielectric behavior; with linear viscoelasticity,
however, their use i1s unjustified. The terms ‘“initial” and “instan-
taneous”” modulus and compliance seem uncertain. TFor amorphous
polymers the appropriate modulus and compliance are often ob-
tained as limiting values when the timescale is short enough at any
given temperature, the material behaving under these conditions as an
organic glass. On this account the terms glass modulus and glass
compliance have been chosen, and these quantities have been denoted
by m, and k,. For other materials, for example, metals, another
term would be preferable. It does not seem likely that a term for
these limiting values suitable for all categories of materials can be
proposed. For the other limiting values, namely, &, and m,, the terms
“static” and ‘‘ultimate” have been suggested. Here again these do
not seem to be an improvement over the terms proposed in this re-
port. The letter suffix for the symbol should of course be related to
the name adopted for the limiting value. For papers published in
languages other than English, it would be desirable that the letter
suffixes adopted be associated with the nomenclature for the limiting
values in other languages. This desirable state of affairs would seem
to be difficult to accomplish.

In the case of nonlinear behavior, the term “viscosity’ is sometimes
used to denote the ratio of shear stress to rate of shear in general,
while the limiting value at very small values of the parameters is
denoted by a term such as ‘“‘Newtonian” viscosity. Since in this re-
port we are dealing only with linear behavior, it seems that such a
modifying term is unnecessary here. Objections have been raised to
the term ‘“‘dynamie viscosity” for m"(w)/w. Sinee this name is well
established for a useful quantity, it has been adopted in this report.

Much of the material of previous preliminary versions of this re-
port has been eliminated, in line with the objective of def ning a mini-
mum number of quantities in order to promote uniform methods of
reporting data. In theoretical treatments it may be convenient to
define further functions, for example:

@) — ky — t//?]}//(ke —~ k)

It does not seem either necessary or desirable to standardize a nomen-
clature for such quantities at this stage.
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