Proposed Nomenclature for Steady Shear Flow and Linear Viscoelastic Behavior

C. L. SIEGLAFF, Diamond Shamrock Co., Painesville, Ohio 44077

Eighteen years ago Leaderman [Trans. Soc. Rheol., I, 213 (1957)] published a nomenclature for linear viscoelasticity. Since that time the science of rheology has matured and its use in other disciplines has grown. In order to facilitate communication between these diverse disciplines, a systematic organization of names and symbols is very desirable.

In 1970, F. R. Eirich, as vice-president of the Society of Rheology, formed an ad hoc committee to review the status of rheological nomenclature. This committee first convened at the Princeton Annual Society meeting. The committee then agreed that a uniform system of nomenclature for material properties, such as moduli, viscosities, etc., was needed. It was also agreed that the existing prevalent usages should serve as guide lines for proposed nomenclature.

Subsequent to the original meeting, several approaches to a uniform system of nomenclature were explored. The results were distilled down to the nomenclature list proposed in the *Rheology Bulletin, Vol. 43.* Several corrections and comments have been included in the final nomenclature published in this report. A major addition is the use of SI units, as well as the cgs system.

The committee recommends that the Society of Rheology members adopt this nomenclature in their communications to the Society. The committee expressly recommends standardization of those symbols and notations representing material constants, material functions, and notations for the directions of shearing flow.

The present committee did not consider it necessary or advisable to develop a dictionary of (phenomenological) behavior. A dictionary of this type by M. Reiner and G. W. Scott Blair is currently

311

© 1976 by The Society of Rheology, Inc. Published by John Wiley & Sons, Inc.

					Units		
Symbol	Name	Definition	SI System			cgs System	
			Name	Symbol	Dimensions	Name	Units
<i>x</i> ,1	geometric direction of flow			_			_
y,2	direction of velocity change	·	—	_	_		_
z,3	neutral direction		_	_	_	_	
$\sigma \equiv \sigma_{21}$	shear stress in simple steady shear flow	_	Pascal	Pa	m ⁻¹ ·kg·s ⁻² or (N/m ²)	—	dyne cm-2
Ŷ	shear rate	dv_x/dy	s ⁻¹	8 ⁻¹	s ⁻¹		8 ⁻¹
η	viscosity	σ/Ϋ	Pascal second	Pa·s	m ⁻¹ ·kg·s ⁻¹ or (N·s/m ²)	Poise	dyne•s•cm ⁻²
N 1	first normal stress function	$\sigma_{11} - \sigma_{22}$	Pascal	Pa	m ⁻¹ ·kg·s ⁻² or (N/m ²)	_	dyne cm-2
V ₂	second normal stress function	$\sigma_{22} - \sigma_{33}$	Pascal	Pa	$m^{-1} \cdot kg \cdot s^{-2}$ or (N/m)		dyne cm⁻²

Nomenclature	for	Simple	Steady	Shear	Flow
		<i>.</i> .			

 $v_x = f(y)$ or $v_1 = f(x_2)$

-

Ψ_1	first normal stress coefficient	$N_1/\dot{\gamma}^2$	—	$Pa \cdot s^2$	$m^{-1} \cdot kg$	—	$dyne \cdot s^2 \cdot cm^{-2}$
Ψ_2	second normal stress coefficient			Pa·s ²	m ⁻¹ ·kg	_	$dyne \cdot s^2 \cdot cm^{-2}$
n 0	limiting viscosity at zero shear rate	lim (σ/γ̀) γ̀→0	Pascal second	Pa·s	m ⁻¹ ·kg·s ⁻¹	Poise	dyne•s•cm ⁻²
η _{αο}	limiting viscosity at infinite shear rate	$\lim_{\dot{\gamma}\to\infty}(\sigma/\dot{\gamma})$	Pascal second	Pa·s	m ⁻¹ ·kg·s ⁻¹	Poise	dyne · s · cm ⁻²
ηε	viscosity of solvent or continuous medium		Pascal second	Pa·s	$m^{-1} \cdot kg \cdot s^{-1}$	Poise	dyne · s · cm ⁻²
ηΓ	relative viscosity	n/n.	d	imensionle	85	din	ensionless
η_{sp}	specific viscosity	$\eta_r - 1$	d	imensionle	ss	dim	ensionless
[7]	intrinsic viscosity	$\lim_{c\to 0} \left(\frac{\eta_r-1}{c}\right)$	<u>(</u>) –		m ³ ·kg ⁻¹		g ⁻¹ ·cm ³ or specified units of con- centration

				Units		
			SI System		CE	zs System
Symbol	Name	Name	Symbol	Dimensions	Name	Units
ω	angular frequency	hertz or radians per second	Hz rad/s	s ⁻¹		s ⁻¹
t	time	second	s		second	S
τ	relaxation time or retardation time	second	s		second	8
η*	complex dynamic shear viscosity	Pascal second	Pa·s	$m^{-1} \cdot kg \cdot s^{-2}$ or N · s/m ²	poise	dyne • s • cm ⁻²
<i>n</i> ′	dynamic viscosity			,		
n''	out-of-phase component of η^*					
B*	bulk dynamic complex compliance	_	Pa ⁻¹	$m \cdot kg^{-1} \cdot s^2$ or (m^2/N)		cm² dyne ⁻¹
B'	bulk storage compliance					
B''	bulk loss compliance					
B(t)	bulk creep compliance					
D *	tensile dynamic complex compliance		Pa-1	$m \cdot kg^{-1} \cdot s^2$ or (m^2/N)		cm² dyne-1
D'	tensile storage compliance					
D''	tensile loss compliance					
D(t)	tensile creep compliance					

Nomenclature for Small Amplitude Oscillatory Motion

E*	tensile dynamic complex modulus	Pascal	Ра	$m^{-1} \cdot kg \cdot s^{-2}$ or (N/m ²)	—	dyne cm ⁻²
E'	tensile storage modulus					
$E^{\prime\prime}$	tensile loss modulus					
$\boldsymbol{E}(t)$	tensile relaxation modulus					
G*	complex dynamic shear modulus	Pascal	Ра	m ⁻¹ ·kg·s ⁻² or (N/m ²)		dyne cm ⁻²
G'	shear storage modulus					
$G^{\prime\prime}$	shear loss modulus					
$\boldsymbol{G}(t)$	shear relaxation modulus					
J*	complex dynamic shear compliance		\mathbf{Pa}^{-1}	$m \cdot kg^{-1} \cdot s^{z}$ or (m^{z}/N)	—	cm² dyne ⁻¹
J'	shear storage compliance					
$J^{\prime\prime}$	shear loss compliance					
J(t)	shear creep compliance					
K*	bulk dynamic complex modulus	Pascal	Pa	m ⁻¹ ·kg·s ⁻² or (N/m ²)		dyne cm ⁻²
K'	bulk storage modulus					
$K^{\prime\prime}$	bulk loss modulus					
K(t)	bulk relaxation modulus					
μ*	complex dynamic Poisson's ratio		dimensionles	8	—	
μ'	in-phase component of μ^*					
μ''	out-of-phase component of μ^*					

	Nomenciatu		mation Line	ar Elasticity		
				Units		
			SI System		cg	s System
Symbol	Name	Name	Symbol	Dimensions	Name	Units
		Simple S	hear			
G	shear modulus; modulus of rigidity	Pascal	Ра	$\frac{m^{-1} \cdot kg \cdot s^{-2}}{or (N/m^2)}$	—	dyne cm ⁻²
J	shear compliance		Pa ⁻¹	m·kg ⁻¹ ·s ² or (m ² /N)		cm² dyne ⁻¹
		Bulk (Isotropic)	Compression			
K	bulk modulus	Pascal	Pa	m ⁻¹ ·kg·s ⁻² or (N/m ²)		dyne cm ⁻²
В	bulk compliance		Pa ⁻¹	${f m\cdot kg^{-1}\cdot s^2}\ { m or}\ (m^2/N)$	_	cm² dyne ⁻¹
		Tensile Ex	tension			
E	Young's modulus (tensile modulus)	Pascal	Pa	m ⁻¹ ·kg·s ⁻² or (N/m ²)	_	dyne cm ⁻²
D	tensile compliance		Pa ⁻¹	$m \cdot kg^{-1} \cdot s^2$ or (m^2/N)	_	cm² dyne-1
μ	Poisson's ratio		dimensionles	8	—	

available (*Rheology*, Vol. 4, Academic Press, New York, 1967). Also, the systemization of non-linear nomenclature was considered to be premature. A future committee should be organized to consider this vital area of rheology.

The chairman wished to thank the committee members:

R. B. Bird	F. R. Eirich	R. R. Myers
R. A. Dickie	H. Markovitz	

for their diligent efforts in compiling the nomenclature list. Also, the committee wishes to express its gratitude to the Society members who made many thoughtful inputs to this endeavor.